Enzyme-activity mutants in Mus musculus. I. Phenotypic description and genetic characterization of ethylnitrosourea-induced mutations

Enzyme-activity mutants in Mus musculus. I. Phenotypic description and genetic characterization... The specific activity of erythrocyte enzymes was measured to detect gene mutations in F1-offspring of male mice treatment with different doses (80, 160, or 250 mg/kg body weight) of ethylnitrosourea (ENU). Altogether 13,230 offspring were screened for 10 enzyme activities. Mutants with reduced activity as well as mutants with enhanced activity were found. Of the 36 independently observed mutations, 20 were homozygous lethal. Genetic and biochemical characterizations were routinely performed. These mutants provide insight into the mechanism of ENU mutagenesis and can serve as models for structure-function studies of the corresponding enzymes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Enzyme-activity mutants in Mus musculus. I. Phenotypic description and genetic characterization of ethylnitrosourea-induced mutations

Loading next page...
 
/lp/springer_journal/enzyme-activity-mutants-in-mus-musculus-i-phenotypic-description-and-8B3yECdrIw
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010103
Publisher site
See Article on Publisher Site

Abstract

The specific activity of erythrocyte enzymes was measured to detect gene mutations in F1-offspring of male mice treatment with different doses (80, 160, or 250 mg/kg body weight) of ethylnitrosourea (ENU). Altogether 13,230 offspring were screened for 10 enzyme activities. Mutants with reduced activity as well as mutants with enhanced activity were found. Of the 36 independently observed mutations, 20 were homozygous lethal. Genetic and biochemical characterizations were routinely performed. These mutants provide insight into the mechanism of ENU mutagenesis and can serve as models for structure-function studies of the corresponding enzymes.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 25, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off