Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties

Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of... In the present study, CNF prepared by TEMPO-mediated oxidation and enzymatic hydrolysis were used for the production of nanopapers using a papermaking-like route. Nanopapers were characterized in terms of tensile, thermal, optical and morphological properties. Those prepared from enzymatically hydrolyzed CNF were found to be weaker at tensile than those resulting from TEMPO-mediated oxidation, but with similar level of stiffness. Enzymatically obtained CNF presented lower transparency due to their higher diameter and lower fibrillation yield. Moreover, TEMPO-oxidized CNF presented lower onset of the thermal degradation temperature (230 °C) due to the presence of carboxylic groups. Overall, the influence of increasing the amount of enzyme during enzymatic hydrolysis and the amount of sodium hypochlorite during TEMPO-mediated oxidation was assessed as function of the ultimate properties of nanopapers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellulose Springer Journals

Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties

Loading next page...
 
/lp/springer_journal/enzymatically-hydrolyzed-and-tempo-oxidized-cellulose-nanofibers-for-aL1y8pXBKD
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
ISSN
0969-0239
eISSN
1572-882X
D.O.I.
10.1007/s10570-017-1394-7
Publisher site
See Article on Publisher Site

Abstract

In the present study, CNF prepared by TEMPO-mediated oxidation and enzymatic hydrolysis were used for the production of nanopapers using a papermaking-like route. Nanopapers were characterized in terms of tensile, thermal, optical and morphological properties. Those prepared from enzymatically hydrolyzed CNF were found to be weaker at tensile than those resulting from TEMPO-mediated oxidation, but with similar level of stiffness. Enzymatically obtained CNF presented lower transparency due to their higher diameter and lower fibrillation yield. Moreover, TEMPO-oxidized CNF presented lower onset of the thermal degradation temperature (230 °C) due to the presence of carboxylic groups. Overall, the influence of increasing the amount of enzyme during enzymatic hydrolysis and the amount of sodium hypochlorite during TEMPO-mediated oxidation was assessed as function of the ultimate properties of nanopapers.

Journal

CelluloseSpringer Journals

Published: Jul 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off