Environmental KCl Causes an Upregulation of Apical Membrane Maxi K and ENaC Channels in Everted Ambystoma Collecting Tubule

Environmental KCl Causes an Upregulation of Apical Membrane Maxi K and ENaC Channels in Everted... Patch clamp methods were used to characterize the channels on the apical membrane of initial collecting ducts from Ambystoma tigrinum. Apical membranes were exposed by everting and perfusing fragments of the renal tubule in vitro. Tubules were dissected from two groups of animals; one maintained in tap water, and the other kept in a solution of 50 mm KCl from seven to nineteen days. Patches of apical membranes on tubules taken from animals exposed to tap water expressed low-conductance amiloride sensitive sodium channels (ENaC) in 22 of 49 patches. Only three maxi K channels were observed in this group. In animals exposed to KCl, low-conductance amiloride sensitive sodium channels, 3.7 ± 0.2 pS (36 of 45 patches) and high-conductance 98.3 ± 5.0 pS (19 of 45 patches) potassium channels were observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Environmental KCl Causes an Upregulation of Apical Membrane Maxi K and ENaC Channels in Everted Ambystoma Collecting Tubule

Loading next page...
 
/lp/springer_journal/environmental-kcl-causes-an-upregulation-of-apical-membrane-maxi-k-and-uzLkQgdst6
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900348
Publisher site
See Article on Publisher Site

Abstract

Patch clamp methods were used to characterize the channels on the apical membrane of initial collecting ducts from Ambystoma tigrinum. Apical membranes were exposed by everting and perfusing fragments of the renal tubule in vitro. Tubules were dissected from two groups of animals; one maintained in tap water, and the other kept in a solution of 50 mm KCl from seven to nineteen days. Patches of apical membranes on tubules taken from animals exposed to tap water expressed low-conductance amiloride sensitive sodium channels (ENaC) in 22 of 49 patches. Only three maxi K channels were observed in this group. In animals exposed to KCl, low-conductance amiloride sensitive sodium channels, 3.7 ± 0.2 pS (36 of 45 patches) and high-conductance 98.3 ± 5.0 pS (19 of 45 patches) potassium channels were observed.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off