Environmental exposure does not explain putative maladaptation in road-adjacent populations

Environmental exposure does not explain putative maladaptation in road-adjacent populations While the ecological consequences of roads are well described, little is known of their role as agents of natural selection, which can shape adaptive and maladaptive responses in populations influenced by roads. This knowledge gap persists despite a growing appreciation for the influence of evolution in human-altered environments. There, insights indicate that natural selection typically results in local adaptation. Thus, populations influenced by road-induced selection should evolve fitness advantages in their local environment. Contrary to this expectation, wood frog tadpoles from roadside populations show evidence of a fitness disadvantage, consistent with local maladaptation. Specifically, in reciprocal transplants, roadside populations survive at lower rates compared to populations away from roads. A key question remaining is whether roadside environmental conditions experienced by early stage embryos induce this outcome. This represents an important missing piece in evaluating the evolutionary nature of this maladaptation pattern. Here, I address this gap using a reciprocal transplant experiment designed to test the hypothesis that embryonic exposure to roadside pond water induces a survival disadvantage. Contrary to this hypothesis, my results show that reduced survival persists when embryonic exposure is controlled. This outcome indicates that the survival disadvantage is parentally mediated, either genetically and/or through inherited environmental effects. This result suggests that roadside populations are either truly maladapted or potentially locally adapted at later life stages. I discuss these interpretations, noting that regardless of mechanism, patterns consistent with maladaptation have important implications for conservation. In light of the pervasiveness of roads, further resolution explaining maladaptive responses remains a critical challenge in conservation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Environmental exposure does not explain putative maladaptation in road-adjacent populations

Oecologia , Volume 184 (4) – Jul 17, 2017

Loading next page...
 
/lp/springer_journal/environmental-exposure-does-not-explain-putative-maladaptation-in-road-f25445oq1a
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Ecology; Plant Sciences; Hydrology/Water Resources
ISSN
0029-8549
eISSN
1432-1939
D.O.I.
10.1007/s00442-017-3912-6
Publisher site
See Article on Publisher Site

Abstract

While the ecological consequences of roads are well described, little is known of their role as agents of natural selection, which can shape adaptive and maladaptive responses in populations influenced by roads. This knowledge gap persists despite a growing appreciation for the influence of evolution in human-altered environments. There, insights indicate that natural selection typically results in local adaptation. Thus, populations influenced by road-induced selection should evolve fitness advantages in their local environment. Contrary to this expectation, wood frog tadpoles from roadside populations show evidence of a fitness disadvantage, consistent with local maladaptation. Specifically, in reciprocal transplants, roadside populations survive at lower rates compared to populations away from roads. A key question remaining is whether roadside environmental conditions experienced by early stage embryos induce this outcome. This represents an important missing piece in evaluating the evolutionary nature of this maladaptation pattern. Here, I address this gap using a reciprocal transplant experiment designed to test the hypothesis that embryonic exposure to roadside pond water induces a survival disadvantage. Contrary to this hypothesis, my results show that reduced survival persists when embryonic exposure is controlled. This outcome indicates that the survival disadvantage is parentally mediated, either genetically and/or through inherited environmental effects. This result suggests that roadside populations are either truly maladapted or potentially locally adapted at later life stages. I discuss these interpretations, noting that regardless of mechanism, patterns consistent with maladaptation have important implications for conservation. In light of the pervasiveness of roads, further resolution explaining maladaptive responses remains a critical challenge in conservation.

Journal

OecologiaSpringer Journals

Published: Jul 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off