Environmental and inoculum effects on epidemiology of bacterial spot disease of stone fruits and development of a disease forecasting system

Environmental and inoculum effects on epidemiology of bacterial spot disease of stone fruits and... Bacterial spot disease of stone fruits, caused by Xanthomonas arboricola pv. pruni, is of high economic importance in the major stone-fruit-producing areas worldwide. A better understanding of disease epidemiology can be valuable in developing disease management strategies. The effects of weather variables (temperature and wet/dry period) on epiphytic growth of X. arboricola pv. pruni on Prunus leaves were analyzed, and the relationship between inoculum density and temperature on disease development was determined and modeled. The information generated in this study, performed under controlled environmental conditions, will be useful to develop a forecasting system for X. arboricola pv. pruni. Optimal temperature for growth of epiphytic populations ranged from 20 to 30 °C under leaf wetness. In contrast, multiplication of epiphytic populations was not only interrupted under low relative humidity (RH) (< 40%) at 25 °C, but also resulted in cell inactivation, with only 0.001% initial cells recovered after 72 h incubation. A significant effect of inoculum density on disease severity was observed and 106 CFU/ml was determined as the minimal infective dose for X. arboricola pv. pruni on Prunus. Infections occurred at temperatures from 15 to 35 °C, but incubation at 25 and 30 °C gave the shortest incubation periods (7.7 and 5.9 days respectively). A model for predicting disease symptom development was generated and successfully evaluated, based on the relationship between disease severity and the accumulated heat expressed in cumulative degree day (CDD). Incubation periods of 150, 175 and 280 CDD were required for 5, 10 and 50% of disease severity, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plant Pathology Springer Journals

Environmental and inoculum effects on epidemiology of bacterial spot disease of stone fruits and development of a disease forecasting system

Loading next page...
 
/lp/springer_journal/environmental-and-inoculum-effects-on-epidemiology-of-bacterial-spot-rzbPL061ud
Publisher
Springer Journals
Copyright
Copyright © 2018 by Koninklijke Nederlandse Planteziektenkundige Vereniging
Subject
Life Sciences; Plant Pathology; Plant Sciences; Ecology; Agriculture; Life Sciences, general
ISSN
0929-1873
eISSN
1573-8469
D.O.I.
10.1007/s10658-018-1507-7
Publisher site
See Article on Publisher Site

Abstract

Bacterial spot disease of stone fruits, caused by Xanthomonas arboricola pv. pruni, is of high economic importance in the major stone-fruit-producing areas worldwide. A better understanding of disease epidemiology can be valuable in developing disease management strategies. The effects of weather variables (temperature and wet/dry period) on epiphytic growth of X. arboricola pv. pruni on Prunus leaves were analyzed, and the relationship between inoculum density and temperature on disease development was determined and modeled. The information generated in this study, performed under controlled environmental conditions, will be useful to develop a forecasting system for X. arboricola pv. pruni. Optimal temperature for growth of epiphytic populations ranged from 20 to 30 °C under leaf wetness. In contrast, multiplication of epiphytic populations was not only interrupted under low relative humidity (RH) (< 40%) at 25 °C, but also resulted in cell inactivation, with only 0.001% initial cells recovered after 72 h incubation. A significant effect of inoculum density on disease severity was observed and 106 CFU/ml was determined as the minimal infective dose for X. arboricola pv. pruni on Prunus. Infections occurred at temperatures from 15 to 35 °C, but incubation at 25 and 30 °C gave the shortest incubation periods (7.7 and 5.9 days respectively). A model for predicting disease symptom development was generated and successfully evaluated, based on the relationship between disease severity and the accumulated heat expressed in cumulative degree day (CDD). Incubation periods of 150, 175 and 280 CDD were required for 5, 10 and 50% of disease severity, respectively.

Journal

European Journal of Plant PathologySpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off