Entropy based fuzzy least squares twin support vector machine for class imbalance learning

Entropy based fuzzy least squares twin support vector machine for class imbalance learning In classification problems, the data samples belonging to different classes have different number of samples. Sometimes, the imbalance in the number of samples of each class is very high and the interest is to classify the samples belonging to the minority class. Support vector machine (SVM) is one of the widely used techniques for classification problems which have been applied for solving this problem by using fuzzy based approach. In this paper, motivated by the work of Fan et al. (Knowledge-Based Systems 115: 87–99 2017), we have proposed two efficient variants of entropy based fuzzy SVM (EFSVM). By considering the fuzzy membership value for each sample, we have proposed an entropy based fuzzy least squares support vector machine (EFLSSVM-CIL) and entropy based fuzzy least squares twin support vector machine (EFLSTWSVM-CIL) for class imbalanced datasets where fuzzy membership values are assigned based on entropy values of samples. It solves a system of linear equations as compared to the quadratic programming problem (QPP) as in EFSVM. The least square versions of the entropy based SVM are faster than EFSVM and give higher generalization performance which shows its applicability and efficiency. Experiments are performed on various real world class imbalanced datasets and http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Entropy based fuzzy least squares twin support vector machine for class imbalance learning

Loading next page...
 
/lp/springer_journal/entropy-based-fuzzy-least-squares-twin-support-vector-machine-for-F8HT3g90l5
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-018-1204-4
Publisher site
See Article on Publisher Site

Abstract

In classification problems, the data samples belonging to different classes have different number of samples. Sometimes, the imbalance in the number of samples of each class is very high and the interest is to classify the samples belonging to the minority class. Support vector machine (SVM) is one of the widely used techniques for classification problems which have been applied for solving this problem by using fuzzy based approach. In this paper, motivated by the work of Fan et al. (Knowledge-Based Systems 115: 87–99 2017), we have proposed two efficient variants of entropy based fuzzy SVM (EFSVM). By considering the fuzzy membership value for each sample, we have proposed an entropy based fuzzy least squares support vector machine (EFLSSVM-CIL) and entropy based fuzzy least squares twin support vector machine (EFLSTWSVM-CIL) for class imbalanced datasets where fuzzy membership values are assigned based on entropy values of samples. It solves a system of linear equations as compared to the quadratic programming problem (QPP) as in EFSVM. The least square versions of the entropy based SVM are faster than EFSVM and give higher generalization performance which shows its applicability and efficiency. Experiments are performed on various real world class imbalanced datasets and

Journal

Applied IntelligenceSpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off