Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence

Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence This paper describes an experimental study of the removal of fine (12 μm) polystyrene particles from a glass substrate, using a gas jet that impinges obliquely onto a particle-laden surface. In order to avoid transient affects associated with jet start-up, the sample was slowly translated under a steady jet. The translating gas jet produces a long, clean path that provides very good statistics for exploring the effect of jet parameters. This study focuses on the dependence of the spatial distribution of removal on the jet pressure ratio and impingement angle. The jet is translated over the sample both longitudinally and transversely to determine both the width and the length of the particle removal footprint. The width of the removal footprint increases and the length decreases as the impingement angle is increased. Previous researchers have reported seemingly contradictory results regarding the dependence of removal efficiency on impingement angle; this paper seeks to resolve these differences. For the steady jet, the threshold jet pressure ratio required for 50% particle removal increases with decreasing impingement angle. In addition, studies of the entrainment of well-characterized particles from well-characterized substrates provide insight into the surface shear stress imposed by the oblique jet. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence

Loading next page...
 
/lp/springer_journal/entrainment-of-fine-particles-from-surfaces-by-gas-jets-impinging-at-47nNR1Uaip
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000148
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial