Enthalpy–entropy compensation for isosteric state adsorption at near ambient temperatures

Enthalpy–entropy compensation for isosteric state adsorption at near ambient temperatures The adsorption process at near ambient temperatures indicated that the EEC (enthalpy–entropy compensation) is affected by three basic thermodynamic values: ∆H, ∆S and T. The consequence is that it is possible to determine an isosteric straight (symbol H − S) without experimental studies based on the slope coefficient T iso , which is the constant arising from the expected temperature range (about 0–60 °C). Therefore, EEC curves can be obtained by appropriate modification of the temperature range. In the case of entropy of adsorption, the decisive influence is the entropy of gas. For visualization and characterization of this impact, we proposed resolute pointer µ (Eq. 25), through which it is observed that for small values of the equilibrium vapor pressure, as P → 0, there are significant deviations from the isosteric straight H − S. The case where P → P 0 followed a gradual grouping of experimental data in accordance with the relationship with H − S. We used the three-parameter equation for exothermic processes. For the extrapolated conditions, the so-called point of zero adsorption represented the enthalpy and entropy of adsorption, whose values are analogous to previous results in the literature, which can be considered an appropriate analytical method to determine these two thermodynamic values. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Adsorption Springer Journals

Enthalpy–entropy compensation for isosteric state adsorption at near ambient temperatures

Loading next page...
 
/lp/springer_journal/enthalpy-entropy-compensation-for-isosteric-state-adsorption-at-near-WQp0Luf4kb
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Chemistry; Industrial Chemistry/Chemical Engineering; Surfaces and Interfaces, Thin Films; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0929-5607
eISSN
1572-8757
D.O.I.
10.1007/s10450-017-9900-7
Publisher site
See Article on Publisher Site

Abstract

The adsorption process at near ambient temperatures indicated that the EEC (enthalpy–entropy compensation) is affected by three basic thermodynamic values: ∆H, ∆S and T. The consequence is that it is possible to determine an isosteric straight (symbol H − S) without experimental studies based on the slope coefficient T iso , which is the constant arising from the expected temperature range (about 0–60 °C). Therefore, EEC curves can be obtained by appropriate modification of the temperature range. In the case of entropy of adsorption, the decisive influence is the entropy of gas. For visualization and characterization of this impact, we proposed resolute pointer µ (Eq. 25), through which it is observed that for small values of the equilibrium vapor pressure, as P → 0, there are significant deviations from the isosteric straight H − S. The case where P → P 0 followed a gradual grouping of experimental data in accordance with the relationship with H − S. We used the three-parameter equation for exothermic processes. For the extrapolated conditions, the so-called point of zero adsorption represented the enthalpy and entropy of adsorption, whose values are analogous to previous results in the literature, which can be considered an appropriate analytical method to determine these two thermodynamic values.

Journal

AdsorptionSpringer Journals

Published: Aug 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off