Entanglement under equilibrium establishing in spin systems subjected to radiofrequency field

Entanglement under equilibrium establishing in spin systems subjected to radiofrequency field We study the entanglement evolution in a dipolar-coupled spin system irradiated by a radiofrequency (RF) field in quasi-equilibrium state characterized by a two-temperature density matrix. Process of the establishment of equilibrium is in the equalization of these temperatures. The method of the nonequilibrium statistical operator in a rotating frame is used to describe the evolution of the spin system. It is shown that the equilibrium establishment has nonexponential character, and the time needed for this establishment depends strongly on the RF field strength. Particularly, the weak RF irradiation increases the lifetime of entanglement. Temporal and temperature dependencies of the concurrence of spin pairs are obtained and discussed. It is shown that application of RF field increases the time of the equilibrium establishment (up to order of 1,000 times) and lifetime of the existence of entangled states (up to order of 1,000 times). Thus, with the help of RF irradiation, we can govern the relaxation process and control entanglement in the system. The obtained results can be used for analysis of more complex spin systems because dipole–dipole interaction decreases proportionally to inverse third power of the distance between the spins, and influence of far way spins can be negligible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Entanglement under equilibrium establishing in spin systems subjected to radiofrequency field

Loading next page...
 
/lp/springer_journal/entanglement-under-equilibrium-establishing-in-spin-systems-subjected-30YJvdItYJ
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0651-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial