Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization

Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization We investigate the role of entanglement in quantum phase transitions, and show that the success of the density matrix renormalization group (DMRG) in understanding such phase transitions is due to the way it preserves entanglement under renormalization. We provide a reinterpretation of the DMRG in terms of the language and tools of quantum information science which allows us to rederive the DMRG in a physically transparent way. Motivated by our reinterpretation we suggest a modification of the DMRG which manifestly takes account of the entanglement in a quantum system. This modified renormalization scheme is shown, in certain special cases, to preserve more entanglement in a quantum system than traditional numerical renormalization methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization

Loading next page...
 
/lp/springer_journal/entanglement-quantum-phase-transitions-and-density-matrix-zHVjv27qu8
Publisher
Springer Journals
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1019601218492
Publisher site
See Article on Publisher Site

Abstract

We investigate the role of entanglement in quantum phase transitions, and show that the success of the density matrix renormalization group (DMRG) in understanding such phase transitions is due to the way it preserves entanglement under renormalization. We provide a reinterpretation of the DMRG in terms of the language and tools of quantum information science which allows us to rederive the DMRG in a physically transparent way. Motivated by our reinterpretation we suggest a modification of the DMRG which manifestly takes account of the entanglement in a quantum system. This modified renormalization scheme is shown, in certain special cases, to preserve more entanglement in a quantum system than traditional numerical renormalization methods.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off