Entanglement in dipolar coupling spin system in equilibrium state

Entanglement in dipolar coupling spin system in equilibrium state We study the appearance of the entangled states in a one-dimensional finite chain of dipolar-coupling nuclear spins of 1/2 in the conditions of thermodynamic equilibrium. It is shown that entanglement is achieved by the application of a low external magnetic field in which the Zeeman interaction energy is the order of or even less than the dipolar interaction one. When these energies are equal, the critical temperature, i. e. the temperature of the entanglement appearance, coincides with the temperature at which the heat capacity of the spin chain achieves its maximum. The obtained relationship between the critical temperature and the magnetic field can be considered as an entanglement witness. The dependences of the heat capacity on temperature and magnetic field have different character for entangled and separable states and can be served for experimental detection of entangled states. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Entanglement in dipolar coupling spin system in equilibrium state

Loading next page...
 
/lp/springer_journal/entanglement-in-dipolar-coupling-spin-system-in-equilibrium-state-0gr1swCL5X
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0320-4
Publisher site
See Article on Publisher Site

Abstract

We study the appearance of the entangled states in a one-dimensional finite chain of dipolar-coupling nuclear spins of 1/2 in the conditions of thermodynamic equilibrium. It is shown that entanglement is achieved by the application of a low external magnetic field in which the Zeeman interaction energy is the order of or even less than the dipolar interaction one. When these energies are equal, the critical temperature, i. e. the temperature of the entanglement appearance, coincides with the temperature at which the heat capacity of the spin chain achieves its maximum. The obtained relationship between the critical temperature and the magnetic field can be considered as an entanglement witness. The dependences of the heat capacity on temperature and magnetic field have different character for entangled and separable states and can be served for experimental detection of entangled states.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 30, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off