Entanglement in dipolar coupling spin system in equilibrium state

Entanglement in dipolar coupling spin system in equilibrium state We study the appearance of the entangled states in a one-dimensional finite chain of dipolar-coupling nuclear spins of 1/2 in the conditions of thermodynamic equilibrium. It is shown that entanglement is achieved by the application of a low external magnetic field in which the Zeeman interaction energy is the order of or even less than the dipolar interaction one. When these energies are equal, the critical temperature, i. e. the temperature of the entanglement appearance, coincides with the temperature at which the heat capacity of the spin chain achieves its maximum. The obtained relationship between the critical temperature and the magnetic field can be considered as an entanglement witness. The dependences of the heat capacity on temperature and magnetic field have different character for entangled and separable states and can be served for experimental detection of entangled states. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Entanglement in dipolar coupling spin system in equilibrium state

Loading next page...
 
/lp/springer_journal/entanglement-in-dipolar-coupling-spin-system-in-equilibrium-state-0gr1swCL5X
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0320-4
Publisher site
See Article on Publisher Site

Abstract

We study the appearance of the entangled states in a one-dimensional finite chain of dipolar-coupling nuclear spins of 1/2 in the conditions of thermodynamic equilibrium. It is shown that entanglement is achieved by the application of a low external magnetic field in which the Zeeman interaction energy is the order of or even less than the dipolar interaction one. When these energies are equal, the critical temperature, i. e. the temperature of the entanglement appearance, coincides with the temperature at which the heat capacity of the spin chain achieves its maximum. The obtained relationship between the critical temperature and the magnetic field can be considered as an entanglement witness. The dependences of the heat capacity on temperature and magnetic field have different character for entangled and separable states and can be served for experimental detection of entangled states.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 30, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off