Entanglement dynamics of non-inertial observers in a correlated environment

Entanglement dynamics of non-inertial observers in a correlated environment Effect of decoherence and correlated noise on the entanglement of X-type state of the Dirac fields in the non-inertial frame is investigated. A two qubit X-state is considered to be shared between the partners where Alice is in inertial frame and Rob in an accelerated frame. The concurrence is used to quantify the entanglement of the X-state system influenced by time correlated amplitude damping, depolarizing and bit flip channels. It is seen that amplitude damping and bit flip channels heavily influence the entanglement of the system as compared to the depolarizing channel. It is found possible to avoid entanglement sudden death (ESD) for all the channels under consideration for μ > 0.75 for any type of initial state. No ESD behaviour is seen for depolarizing channel in the presence of correlated noise for entire range of decoherence parameter p and Rob’s acceleration r. It is also seen that the effect of environment is much stronger than that of acceleration of the accelerated partner. Furthermore, it is investigated that correlated noise compensates the loss of entanglement caused by the Unruh effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Entanglement dynamics of non-inertial observers in a correlated environment

Loading next page...
 
/lp/springer_journal/entanglement-dynamics-of-non-inertial-observers-in-a-correlated-jMIFrhSmVF
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0354-7
Publisher site
See Article on Publisher Site

References

  • Sudden birth versus sudden death of entanglement in multipartite systems
    Lopez, C.E.; Romero, G.; Lastra, F.; Solano, E.; Retamal, J.C.
  • Relativity of mixed entangled states
    Moradi, S.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial