Entangled brachistochrone: minimum time to reach the target entangled state

Entangled brachistochrone: minimum time to reach the target entangled state We address the question: Given an arbitrary initial state and a general physical interaction what is the minimum time for reaching a target entangled state? We show that the minimum time is inversely proportional to the quantum mechanical uncertainty in the non-local Hamiltonian. We find that the presence of initial entanglement helps to minimize the waiting time. We bring out a connection between the entangled brachistochrone and the entanglement rate. Furthermore, we find that in a bi-local rotating frame the entangling capability is actually a geometric quantity. We give a bound for the time average of entanglement rate for general quantum systems which goes as $${{\bar \Gamma} \le 2 \log N \frac{\Delta H}{\hbar S_0}}$$ . The time average of entanglement rate does not depend on the particular Hamiltonian, rather on the fluctuation in the Hamiltonian. There can be infinite number of nonlocal Hamiltonians which may give same average entanglement rate. We also prove a composition law for minimum time when the system evolves under a composite Hamiltonian. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Entangled brachistochrone: minimum time to reach the target entangled state

Loading next page...
 
/lp/springer_journal/entangled-brachistochrone-minimum-time-to-reach-the-target-entangled-MwpYP6m0WP
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematics, general; Quantum Physics; Physics, general; Computer Science, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0309-z
Publisher site
See Article on Publisher Site

Abstract

We address the question: Given an arbitrary initial state and a general physical interaction what is the minimum time for reaching a target entangled state? We show that the minimum time is inversely proportional to the quantum mechanical uncertainty in the non-local Hamiltonian. We find that the presence of initial entanglement helps to minimize the waiting time. We bring out a connection between the entangled brachistochrone and the entanglement rate. Furthermore, we find that in a bi-local rotating frame the entangling capability is actually a geometric quantity. We give a bound for the time average of entanglement rate for general quantum systems which goes as $${{\bar \Gamma} \le 2 \log N \frac{\Delta H}{\hbar S_0}}$$ . The time average of entanglement rate does not depend on the particular Hamiltonian, rather on the fluctuation in the Hamiltonian. There can be infinite number of nonlocal Hamiltonians which may give same average entanglement rate. We also prove a composition law for minimum time when the system evolves under a composite Hamiltonian.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 6, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off