Ensuring location diversity in privacy-preserving spatio-temporal data publishing

Ensuring location diversity in privacy-preserving spatio-temporal data publishing The rise of mobile technologies in the last decade has led to vast amounts of location information generated by individuals. From the knowledge discovery point of view, these data are quite valuable, but the inherent personal information in the data raises privacy concerns. There exists many algorithms in the literature to satisfy the privacy requirements of individuals, by generalizing, perturbing, and suppressing their data. Current techniques that try to ensure a level of indistinguishability between trajectories in a dataset are direct applications of $$k$$ k -anonymity, thus suffer from the shortcomings of $$k$$ k -anonymity such as the lack of diversity in sensitive regions. Moreover, these techniques fail to incorporate some common background knowledge, an adversary might have such as the underlying map, the traffic density, and the anonymization algorithm itself. We propose a new privacy metric $$p$$ p -confidentiality that ensures location diversity by bounding the probability of a user visiting a sensitive location with the $$p$$ p input parameter. We perform our probabilistic analysis based on the background knowledge of the adversary. Instead of grouping the trajectories, we anonymize the underlying map, that is, we group nodes (points of interest) to create obfuscation areas around sensitive locations. The groups are formed in such a way that the parts of trajectories entering the groups, coupled with the adversary background, do not increase the adversary’s belief in violating the $$p$$ p -confidentiality. We then use the map anonymization as a model to anonymize the trajectories. We prove that our algorithm is resistant to reverse-engineering attacks when the statistics required for map anonymization is publicly available. We empirically evaluate the performance of our algorithm and show that location diversity can be satisfied effectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Ensuring location diversity in privacy-preserving spatio-temporal data publishing

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial