Ensemble-Based Risk Scoring with Extreme Learning Machine for Prediction of Adverse Cardiac Events

Ensemble-Based Risk Scoring with Extreme Learning Machine for Prediction of Adverse Cardiac Events Accurate prediction of adverse cardiac events for the emergency department (ED) chest pain patients is essential in risk stratification due to the current ambiguity in diagnosing acute coronary syndrome. While most current practices rely on human decision by measuring clinical vital signs, computerized solutions are gaining popularity. We have previously proposed an ensemble-based scoring system (ESS). In this paper, we aim to extend the ESS system using extreme learning machine (ELM), a fast learning algorithm for neural networks. We recruited patients from the ED of Singapore General Hospital, and extracted features such as heart rate variability, 12-lead ECG parameters, and vital signs. We also proposed a novel algorithm called ESS-ELM to predict adverse cardiac events. Different from the original ESS algorithm, ESS-ELM uses the under-sampling technique only in model training. Our proposed method was compared to the original ESS algorithm and several clinical scores in predicting patient outcome. With a cohort of 797 recruited patients, we demonstrated that ESS-ELM outperformed the original ESS algorithm and three established clinical scores, namely HEART, TIMI, and GRACE, in terms of receiver operating characteristic analysis. Furthermore, we have investigated the impact of hidden node number and ensemble size on the predictive performance. ELM has demonstrated the flexibility in its integration with the ESS algorithm. Experiments showed the value of ESS-ELM in prediction of adverse cardiac events. Future works may include the use of new ELM-based learning methods and further validation with a new cohort of patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cognitive Computation Springer Journals

Ensemble-Based Risk Scoring with Extreme Learning Machine for Prediction of Adverse Cardiac Events

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Biomedicine; Neurosciences; Computation by Abstract Devices; Artificial Intelligence (incl. Robotics); Computational Biology/Bioinformatics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial