Enhancing quantum annealing performance for the molecular similarity problem

Enhancing quantum annealing performance for the molecular similarity problem Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware’s performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Enhancing quantum annealing performance for the molecular similarity problem

Loading next page...
 
/lp/springer_journal/enhancing-quantum-annealing-performance-for-the-molecular-similarity-BL4zP2zt3k
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1586-y
Publisher site
See Article on Publisher Site

Abstract

Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware’s performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off