Enhancing human action recognition via structural average curves analysis

Enhancing human action recognition via structural average curves analysis Human action recognition typically requires a large amount of training samples, which is often expensive and time-consuming to create. In this paper, we present a novel approach for enhancing human actions with a limited number of samples via structural average curves analysis. Our approach first learns average sequences from each pair of video samples for every action class and then gather them with original video samples together to form a new training set. Action modeling and recognition are proposed to be performed with the resulting new set. Our technique was evaluated on four benchmarking datasets. Our classification results are superior to those obtained with the original training sets, which suggests that the proposed method can potentially be integrated with other approaches to further improve their recognition performances. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Signal, Image and Video Processing" Springer Journals

Enhancing human action recognition via structural average curves analysis

Loading next page...
 
/lp/springer_journal/enhancing-human-action-recognition-via-structural-average-curves-Wu1HqMsb2j
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Computer Science; Image Processing and Computer Vision; Signal,Image and Speech Processing; Computer Imaging, Vision, Pattern Recognition and Graphics; Multimedia Information Systems
ISSN
1863-1703
eISSN
1863-1711
D.O.I.
10.1007/s11760-018-1311-z
Publisher site
See Article on Publisher Site

Abstract

Human action recognition typically requires a large amount of training samples, which is often expensive and time-consuming to create. In this paper, we present a novel approach for enhancing human actions with a limited number of samples via structural average curves analysis. Our approach first learns average sequences from each pair of video samples for every action class and then gather them with original video samples together to form a new training set. Action modeling and recognition are proposed to be performed with the resulting new set. Our technique was evaluated on four benchmarking datasets. Our classification results are superior to those obtained with the original training sets, which suggests that the proposed method can potentially be integrated with other approaches to further improve their recognition performances.

Journal

"Signal, Image and Video Processing"Springer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off