ENHANCER of TRYand CPC 2(ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis

ENHANCER of TRYand CPC 2(ETC2) reveals redundancy in the region-specific control of trichome... >An evolutionarily conserved set of proteins consisting of MYB and bHLH transcription factors and a WD40 domain protein is known to act in concert to control various developmental processes including trichome and root hair development. Their function is difficult to assess because most of them belong to multigene families and appear to act in a redundant fashion. In this study we identified an enhancer of the two root hair and trichome patterning mutants triptychon (try) and caprice (cpc), enhancer of try and cpc2 (etc2). The ETC2 gene shows high sequence similarity to the single-repeat MYB genes CPC and TRY. Overexpression results in the suppression of trichomes and overproduction of root hairs similarly as observed for TRY and CPC suggesting that ETC2 has similar biochemical properties. The etc2 single mutant shows an increase in trichome number on leaves and petiols. Double and triple mutant analysis indicates that the ETC2 gene acts redundant with TRY and CPC in trichome patterning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

ENHANCER of TRYand CPC 2(ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis

Loading next page...
 
/lp/springer_journal/enhancer-of-tryand-cpc-2-etc2-reveals-redundancy-in-the-region-vq0a0hSbd0
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-0893-8
Publisher site
See Article on Publisher Site

Abstract

>An evolutionarily conserved set of proteins consisting of MYB and bHLH transcription factors and a WD40 domain protein is known to act in concert to control various developmental processes including trichome and root hair development. Their function is difficult to assess because most of them belong to multigene families and appear to act in a redundant fashion. In this study we identified an enhancer of the two root hair and trichome patterning mutants triptychon (try) and caprice (cpc), enhancer of try and cpc2 (etc2). The ETC2 gene shows high sequence similarity to the single-repeat MYB genes CPC and TRY. Overexpression results in the suppression of trichomes and overproduction of root hairs similarly as observed for TRY and CPC suggesting that ETC2 has similar biochemical properties. The etc2 single mutant shows an increase in trichome number on leaves and petiols. Double and triple mutant analysis indicates that the ETC2 gene acts redundant with TRY and CPC in trichome patterning.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off