Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive

Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive ZnO nanoparticles were synthesized under mild hydrothermal conditions (T = 150 °C, P = autogenous, experimental duration = 18 h). Manganese was added as an additive to ZnO nanoparticles in different molar percentages. In situ surface-modification was successfully carried out for these manganese-added ZnO nanoparticles using n-butylamine as a surface modifier. The modified manganese-added ZnO nanoparticulates are hydrophilic in nature and are well dispersed in various solvents. The modified nanoparticles were characterized using powder XRD, FTIR, SEM, Zeta potential, and UV–Vis spectrophotometry. The characterization results indicated tailoring of the morphology and size of the nanoparticles, and changing the surface chemistry of the nanoparticles synthesized. The SEM results show that the surface modified manganese-added ZnO nanoparticles have a very thin layer of organic coverage around the inorganic nanoparticles, thus, giving rise to hybrid nanoparticles. The photodegradation of Brilliant Blue dye under sunlight showed the higher efficiency of the modified manganese-doped ZnO nanoparticles compared to the reagent-grade ZnO. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive

Loading next page...
 
/lp/springer_journal/enhancement-of-the-photocatalytic-activity-of-modified-zno-5YSiQzAuBC
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0255-5
Publisher site
See Article on Publisher Site

Abstract

ZnO nanoparticles were synthesized under mild hydrothermal conditions (T = 150 °C, P = autogenous, experimental duration = 18 h). Manganese was added as an additive to ZnO nanoparticles in different molar percentages. In situ surface-modification was successfully carried out for these manganese-added ZnO nanoparticles using n-butylamine as a surface modifier. The modified manganese-added ZnO nanoparticulates are hydrophilic in nature and are well dispersed in various solvents. The modified nanoparticles were characterized using powder XRD, FTIR, SEM, Zeta potential, and UV–Vis spectrophotometry. The characterization results indicated tailoring of the morphology and size of the nanoparticles, and changing the surface chemistry of the nanoparticles synthesized. The SEM results show that the surface modified manganese-added ZnO nanoparticles have a very thin layer of organic coverage around the inorganic nanoparticles, thus, giving rise to hybrid nanoparticles. The photodegradation of Brilliant Blue dye under sunlight showed the higher efficiency of the modified manganese-doped ZnO nanoparticles compared to the reagent-grade ZnO.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 6, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off