Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele-Shaw cell

Enhancement of synthetic schlieren image resolution using total variation optical flow:... We present an improvement to the standard synthetic schlieren technique to obtain the temperature distribution of a fluid inside of a Hele-Shaw cell. We aim to use the total variation $$L^1$$ L 1 -norm optical flow method to treat experimental images and to obtain quantitative results of the development of thermal convection inside a cell, by detecting the gradients of the optical refractive index. We present a simple algorithm to set the optical flow parameters, which is based on the comparison between the optical flow output and the result obtained by digital PIV using the structural index metric. As an example of the application of the proposed method, we analyze laboratory experiments of thermal convection in porous media using a Hele-Shaw cell. We demonstrate that the application of the proposed method produces important improvements versus digital PIV, for the quantification of the gradients of the refractive index including the detection of small-scale convective structures. In comparison with correlation-based digital methods, we demonstrate the advantages of the proposed method, such as denoising and edge capture. These features allow us to obtain the temperature, for this experimental setting, with better image resolution than other techniques reported in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele-Shaw cell

Loading next page...
 
/lp/springer_journal/enhancement-of-synthetic-schlieren-image-resolution-using-total-2n2oqkL8Yp
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2109-1
Publisher site
See Article on Publisher Site

Abstract

We present an improvement to the standard synthetic schlieren technique to obtain the temperature distribution of a fluid inside of a Hele-Shaw cell. We aim to use the total variation $$L^1$$ L 1 -norm optical flow method to treat experimental images and to obtain quantitative results of the development of thermal convection inside a cell, by detecting the gradients of the optical refractive index. We present a simple algorithm to set the optical flow parameters, which is based on the comparison between the optical flow output and the result obtained by digital PIV using the structural index metric. As an example of the application of the proposed method, we analyze laboratory experiments of thermal convection in porous media using a Hele-Shaw cell. We demonstrate that the application of the proposed method produces important improvements versus digital PIV, for the quantification of the gradients of the refractive index including the detection of small-scale convective structures. In comparison with correlation-based digital methods, we demonstrate the advantages of the proposed method, such as denoising and edge capture. These features allow us to obtain the temperature, for this experimental setting, with better image resolution than other techniques reported in the literature.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off