Enhancement of photocatalytic properties of TiO2 for NO photo-oxidation by optimized sol–gel synthesis

Enhancement of photocatalytic properties of TiO2 for NO photo-oxidation by optimized sol–gel... TiO2 samples were prepared by the sol–gel method applying a factorial design in order to improve the photocatalytic properties of the semiconductor oxide for the nitric oxide (NO) photo-oxidation reaction. The temperature of calcination and the amount of alcohol and acid used in the course of the sol–gel reaction were selected as critical experimental variables. As the products of the factorial design, 27 TiO2 samples were obtained and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and adsorption–desorption N2 isotherms. The photocatalytic activity of the TiO2 samples was evaluated in the NO photo-oxidation reaction under UV irradiation. The conversion degree of NO reached by each sample was associated with its physicochemical properties, finding a stronger dependence with the temperature of calcination and morphology of the samples. Different photocatalytic reaction parameters were modified such as mass of photocatalyst, irradiance, flow rate of gas, and relative humidity in order to evaluate their effect in the constants of velocity and adsorption. The TiO2 sample with the highest photocatalytic activity was exposed under different experimental conditions to evaluate its selectivity for the formation of innocuous nitrate ions as final product of the NO photo-oxidation reaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Enhancement of photocatalytic properties of TiO2 for NO photo-oxidation by optimized sol–gel synthesis

Loading next page...
 
/lp/springer_journal/enhancement-of-photocatalytic-properties-of-tio2-for-no-photo-FZCAJnyw8F
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2518-7
Publisher site
See Article on Publisher Site

Abstract

TiO2 samples were prepared by the sol–gel method applying a factorial design in order to improve the photocatalytic properties of the semiconductor oxide for the nitric oxide (NO) photo-oxidation reaction. The temperature of calcination and the amount of alcohol and acid used in the course of the sol–gel reaction were selected as critical experimental variables. As the products of the factorial design, 27 TiO2 samples were obtained and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and adsorption–desorption N2 isotherms. The photocatalytic activity of the TiO2 samples was evaluated in the NO photo-oxidation reaction under UV irradiation. The conversion degree of NO reached by each sample was associated with its physicochemical properties, finding a stronger dependence with the temperature of calcination and morphology of the samples. Different photocatalytic reaction parameters were modified such as mass of photocatalyst, irradiance, flow rate of gas, and relative humidity in order to evaluate their effect in the constants of velocity and adsorption. The TiO2 sample with the highest photocatalytic activity was exposed under different experimental conditions to evaluate its selectivity for the formation of innocuous nitrate ions as final product of the NO photo-oxidation reaction.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off