Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis

Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor... Increasing numbers of investigations indicate that ethylene response factor (ERF) proteins play important roles in plant stress responses via interacting with GCC box and/dehydration-responsive element/C-repeat to modulate expression of downstream genes, but the detailed regulatory mechanism is not well elucidated. Revealing the modulation pathway of ERF proteins in response to stresses is vital. Previously, we showed that tomato ERF protein TERF2/LeERF2 is ethylene inducible, and ethylene production is suppressed in antisense TERF2/LeERF2 tomatoes, suggesting that TERF2/LeERF2 functions as a positive regulator in ethylene biosynthesis. In this paper, we report that regulation of TERF2/LeERF2 in ethylene biosynthesis is associated with enhanced freezing tolerance of tobacco and tomato. Analysis of gene expression showed that cold slowly induces expression of TERF2/LeERF2 in tomato, implying that TERF2/LeERF2 may be involved in cold response through ethylene modulation. To test the hypothesis, we first observed that overexpressing TERF2/LeERF2 tobaccos not only enhances freezing tolerance via activating expression of cold-related genes, but also significantly reduces electrolyte leakage. In addition, with treatment of ethylene biosynthesis inhibitor or ethylene receptor antagonist, we then showed that blockage of ethylene biosynthesis or the ethylene signaling pathway decreases freezing tolerance of overexpressing TERF2/LeERF2 tobaccos. Moreover, the results from tomatoes showed that overexpressing TERF2/LeERF2 tomatoes enhances while antisense TERF2/LeERF2 transgenic lines decreases freezing tolerance, and application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid restored freezing tolerance of antisense lines. Therefore our results establish that TERF2/LeERF2 enhances freezing tolerance of plants through ethylene biosynthesis and the ethylene signaling pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis

Loading next page...
 
/lp/springer_journal/enhanced-tolerance-to-freezing-in-tobacco-and-tomato-overexpressing-L0fIQy503D
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9609-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial