Access the full text.
Sign up today, get DeepDyve free for 14 days.
Molybdenum disulfide hybridized with graphene nanoribbon (MoS2/GNR) was prepared by mild method. MoS2/GNR hybrids interlace loosely into a three-dimension structure. GNR hybridization can improve the dispersity of MoS2, reduce the grain size of MoS2 to 3–6 nm, increase the specific surface area, and broaden the interlamellar spacing of MoS2 (002) plane to 0.67–0.73 nm, which facilitates the transportation of Li+ ions for lithium-ion battery. MoS2/GNR hybrids have better cyclic durability, higher specific discharge capacity, and superior rate performance than MoS2. The electrocatalytic activity in hydrogen evolution reaction shows that MoS2/GNR hybrids have the lower overpotential and the larger current density with a negligible current loss after 2000 cycles. Hybridizing with GNRs enhances both the lithium-ion electrochemical storage and the electrocatalytic activity of MoS2.
Journal of Nanoparticle Research – Springer Journals
Published: Jun 2, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.