Enhanced image similarity analysis system in digital pathology

Enhanced image similarity analysis system in digital pathology In digital pathology, image similarity algorithms are used to find cancer in tissue cells from medical images. However, it is very difficult to apply image similarity algorithms used in general purpose system. Because in the medical field, accuracy and reliability must be perfect when looking for cancer cells by using image similarity techniques to pathology images. To cope with this problem, this paper proposes an efficient similar image search algorithm for digital pathology by applying leveling and tiling scheme on OpenSlide format. Furthermore, we apply image sync method to extract feature key points during image similarity processing. In the experiment, to prove the efficiency of the proposed system, we conduct several experiments including algorithm performance, algorithm accuracy and computation time. The experiments result shows that the proposed system efficiently retrieves similar cell images from pathology images. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Enhanced image similarity analysis system in digital pathology

Loading next page...
 
/lp/springer_journal/enhanced-image-similarity-analysis-system-in-digital-pathology-H7aFABDjdY
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4773-z
Publisher site
See Article on Publisher Site

Abstract

In digital pathology, image similarity algorithms are used to find cancer in tissue cells from medical images. However, it is very difficult to apply image similarity algorithms used in general purpose system. Because in the medical field, accuracy and reliability must be perfect when looking for cancer cells by using image similarity techniques to pathology images. To cope with this problem, this paper proposes an efficient similar image search algorithm for digital pathology by applying leveling and tiling scheme on OpenSlide format. Furthermore, we apply image sync method to extract feature key points during image similarity processing. In the experiment, to prove the efficiency of the proposed system, we conduct several experiments including algorithm performance, algorithm accuracy and computation time. The experiments result shows that the proposed system efficiently retrieves similar cell images from pathology images.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: May 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off