Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion

Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane... Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce1-xLaxO2-δ (x = 0–0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO2. M-Ce0.8La0.2O2-δ (monolithic catalyst, Ce0.8La0.2O2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce0.8La0.2O2-δ monolithic catalyst presents excellent stability at high temperature. These Ce1-xLaxO2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion

Loading next page...
 
/lp/springer_journal/enhanced-activity-and-stability-of-la-doped-ceo2-monolithic-catalysts-Y59Km0M4lG
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0934-x
Publisher site
See Article on Publisher Site

Abstract

Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce1-xLaxO2-δ (x = 0–0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO2. M-Ce0.8La0.2O2-δ (monolithic catalyst, Ce0.8La0.2O2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce0.8La0.2O2-δ monolithic catalyst presents excellent stability at high temperature. These Ce1-xLaxO2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off