Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize

Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize ZmOCL1 is the founding member of the ZmOCL (Outer Cell Layer) family encoding putative transcription factors of the HD-ZIP IV class. It is expressed in the L1 cell layer of the embryo and several other tissues of maize. After determination of the intron/exon structure a mutator insertion was isolated in the upstream region. No notable phenotypes and wildtype levels of ZmOCL1 transcript were observed in homozygous mutant plants. In contrast transgenic plants carrying a fusion of the repressor domain of the Drosophila Engrailed gene with the DNA binding and dimerisation domains of ZmOCL1 showed a transient reduction of embryo, endosperm and kernel size that was most obvious around 15 DAP. An inverse relationship was observed between the degree of size reduction and the expression level of the transcript. In reciprocal crosses the size reduction was only observed when the transgenic plants were used as females and no expression of male transmitted transgenes was detected. Smaller kernels resembled younger kernels of wild-type siblings indicating that interference with ZmOCL1 function leads to an overall slow-down of early kernel development. Based on marker gene analysis ZmOCL1 may act via a modification of gibberellin levels. Phylogenetic analyses based on the intron/exon structure and sequence similarities of ZmOCL1 and other HD-ZIP IV proteins from maize, rice and Arabidopsis helped to identify orthologues and suggested an evolution in the function of individual genes after the divergence of monocots and dicots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize

Loading next page...
 
/lp/springer_journal/engrailed-zmocl1-fusions-cause-a-transient-reduction-of-kernel-size-in-12dW05OD9Y
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5219-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial