Engineering scalable, cache and space efficient tries for strings

Engineering scalable, cache and space efficient tries for strings Storing and retrieving strings in main memory is a fundamental problem in computer science. The efficiency of string data structures used for this task is of paramount importance for applications such as in-memory databases, text-based search engines and dictionaries. The burst trie is a leading choice for such tasks, as it can provide fast sorted access to strings. The burst trie, however, uses linked lists as substructures which can result in poor use of CPU cache and main memory. Previous research addressed this issue by replacing linked lists with dynamic arrays forming a cache-conscious array burst trie. Though faster, this variant can incur high instruction costs which can hinder its efficiency. Thus, engineering a fast, compact, and scalable trie for strings remains an open problem. In this paper, we introduce a novel and practical solution that carefully combines a trie with a hash table, creating a variant of burst trie called HAT-trie. We provide a thorough experimental analysis which demonstrates that for large set of strings and on alternative computing architectures, the HAT-trie—and two novel variants engineered to achieve further space-efficiency—is currently the leading in-memory trie-based data structure offering rapid, compact, and scalable storage and retrieval of variable-length strings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Engineering scalable, cache and space efficient tries for strings

Loading next page...
 
/lp/springer_journal/engineering-scalable-cache-and-space-efficient-tries-for-strings-W9B9e1gDbj
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0183-9
Publisher site
See Article on Publisher Site

Abstract

Storing and retrieving strings in main memory is a fundamental problem in computer science. The efficiency of string data structures used for this task is of paramount importance for applications such as in-memory databases, text-based search engines and dictionaries. The burst trie is a leading choice for such tasks, as it can provide fast sorted access to strings. The burst trie, however, uses linked lists as substructures which can result in poor use of CPU cache and main memory. Previous research addressed this issue by replacing linked lists with dynamic arrays forming a cache-conscious array burst trie. Though faster, this variant can incur high instruction costs which can hinder its efficiency. Thus, engineering a fast, compact, and scalable trie for strings remains an open problem. In this paper, we introduce a novel and practical solution that carefully combines a trie with a hash table, creating a variant of burst trie called HAT-trie. We provide a thorough experimental analysis which demonstrates that for large set of strings and on alternative computing architectures, the HAT-trie—and two novel variants engineered to achieve further space-efficiency—is currently the leading in-memory trie-based data structure offering rapid, compact, and scalable storage and retrieval of variable-length strings.

Journal

The VLDB JournalSpringer Journals

Published: Oct 1, 2010

References

  • Algorithms for trie compaction
    Al-Suwaiyel, M.; Horowitz, E.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off