Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera

Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal... Recombinant Bt construct was prepared by exchange of pore forming domain I with cry1Ac to cry9Aa gene by overlap extension PCR (OE-PCR) technique. Construction of cry1Ac-cry9Aa was accomplished by six base pair homology at 3′ ends of PCR products of domain I of cry1Ac and domain II and III of cry9Aa. The recombinant toxin was also modified by deletion of N-terminal alpha helix-1 of recombinant toxin. Both Cry toxins were expressed in E. coli BL21(DE3) plysS and purified by His-tag purification. Upon insect bioassay analysis against devastating crop pest Helicoverpa armigera, toxicity of recombinant toxin was found around fivefold higher than native Cry1Ac while alpha helix-1 deleted N-terminal modified toxin did not resulted in significant increase in toxicity. The recombinant Cry toxins such as Cry1Ac-Cry9Aa and Cry1Ac-Cry9AaMod may be used for insect pest control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Microbiology Springer Journals

Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera

Loading next page...
 
/lp/springer_journal/engineered-cry1ac-cry9aa-hybrid-bacillus-thuringiensis-delta-endotoxin-go24n4McMp
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Ecology; Biochemistry, general; Cell Biology; Biotechnology; Ecology
ISSN
0302-8933
eISSN
1432-072X
D.O.I.
10.1007/s00203-017-1407-9
Publisher site
See Article on Publisher Site

Abstract

Recombinant Bt construct was prepared by exchange of pore forming domain I with cry1Ac to cry9Aa gene by overlap extension PCR (OE-PCR) technique. Construction of cry1Ac-cry9Aa was accomplished by six base pair homology at 3′ ends of PCR products of domain I of cry1Ac and domain II and III of cry9Aa. The recombinant toxin was also modified by deletion of N-terminal alpha helix-1 of recombinant toxin. Both Cry toxins were expressed in E. coli BL21(DE3) plysS and purified by His-tag purification. Upon insect bioassay analysis against devastating crop pest Helicoverpa armigera, toxicity of recombinant toxin was found around fivefold higher than native Cry1Ac while alpha helix-1 deleted N-terminal modified toxin did not resulted in significant increase in toxicity. The recombinant Cry toxins such as Cry1Ac-Cry9Aa and Cry1Ac-Cry9AaMod may be used for insect pest control.

Journal

Archives of MicrobiologySpringer Journals

Published: Jul 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off