Energy prediction of CUDA application instances using dynamic regression models

Energy prediction of CUDA application instances using dynamic regression models GPGPUs no longer seem to be an inconsequential component of supercomputing architectures, and a section of HPC application developers no longer refrain from utilizing GPGPUs. CUDA, in general, has remained a successful computing platform for those architectures. Thousands of scientific applications from various domains, such, as bio-informatics, HEP, and so forth, have been accelerated using CUDA in the past few years. In fact, the energy consumption issue still remains a serious challenge for the HPC and GPGPU communities. This paper proposes energy prediction approaches using dynamic regression models, such as parallel dynamic random forest modeling (P-DynRFM), dynamic random forest modeling (DynRFM), dynamic support vector machines (DynSVM), and dynamic linear regression modeling (DynLRM). These models identify energy efficient CUDA application instances while considering the block size, grid size, and the other tunable parameters, such as problem size. The predictions of CUDA application instances have been attained by executing a few CUDA application instances and predicting the other CUDA application instances based on the performance metrics of applications, such as number of instructions, memory issues, and so forth. The proposed energy prediction mechanisms were evaluated with CUDA applications such as Nbody and Particle Simulations on two GPGPU machines. The proposed dynamic prediction mechanisms achieved a 50.26 to 61.23 percentage of energy/performance prediction improvements when compared to the classical prediction models; and, the parallel implementation of the dynamic RFM (P-DynRFM) recorded over 83 percentage points of prediction time improvements. Computing Springer Journals

Energy prediction of CUDA application instances using dynamic regression models

Loading next page...
Springer Vienna
Copyright © 2017 by Springer-Verlag Wien
Computer Science; Computer Science, general; Information Systems Applications (incl.Internet); Computer Communication Networks; Software Engineering; Artificial Intelligence (incl. Robotics); Computer Appl. in Administrative Data Processing
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial