Energy-efficiency versus resilience: risk awareness view on dimensioning of optical networks with a sleep mode

Energy-efficiency versus resilience: risk awareness view on dimensioning of optical networks with... This article proposes to solve the trade-off between energy-efficiency and resilience with a focus on business mechanisms. Risk engineering is used as a foundation. Financial impact (penalty) quantification with various compensation policies is applied, and business-relevant risk measures are used during the risk assessment. Then, risk mitigation strategies are evaluated to select the appropriate risk response. The approach is presented in networks with energy profiles supporting a sleep mode. An effective heuristic is used to assign flows, and it is shown that the energy-efficiency performance is substantially independent of the recovery methods selected for risk mitigation. It is also demonstrated that backup resources can be switched off in the normal state without having a considerable impact from a financial viewpoint. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Energy-efficiency versus resilience: risk awareness view on dimensioning of optical networks with a sleep mode

Loading next page...
 
/lp/springer_journal/energy-efficiency-versus-resilience-risk-awareness-view-on-5JjepQA0tk
Publisher
Springer Journals
Copyright
Copyright © 2015 by The Author(s)
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0495-1
Publisher site
See Article on Publisher Site

Abstract

This article proposes to solve the trade-off between energy-efficiency and resilience with a focus on business mechanisms. Risk engineering is used as a foundation. Financial impact (penalty) quantification with various compensation policies is applied, and business-relevant risk measures are used during the risk assessment. Then, risk mitigation strategies are evaluated to select the appropriate risk response. The approach is presented in networks with energy profiles supporting a sleep mode. An effective heuristic is used to assign flows, and it is shown that the energy-efficiency performance is substantially independent of the recovery methods selected for risk mitigation. It is also demonstrated that backup resources can be switched off in the normal state without having a considerable impact from a financial viewpoint.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 11, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off