Energy conscious multi-site computation offloading for mobile cloud computing

Energy conscious multi-site computation offloading for mobile cloud computing In mobile devices, one of the major reasons for battery consumption is due to computation of complex applications. To provide high performance of execution on the mobile devices, the concept of mobile cloud computing (MCC) is used. MCC allows the computation complex modules to offload onto a cloud from a mobile device, which helps to remove the resource constraint condition of the mobile devices. Computations can also be offloaded to nearby clouds called multi-sites, which may have different resources, access delays, computation capability or service charges. The mobile users can specify their priority such as total completion time, cost or energy saving of the application execution in MCC environment. But most of the existing research is focused to optimize only one objective, i.e., either total completion time or cost or energy. But when offloading computation modules onto cloud-based multi-sites, a tradeoff solution is required to strike a balance between the total completion time and energy savings. Further, the entire computational execution on the cloud is to be served efficiently with optimal power utilization. Various algorithms are developed to reduce power consumption, and one such algorithm is dynamic voltage and frequency scaling (DVFS) algorithm. In this paper, new algorithms known as cost and time constraint task partitioning and offloading algorithm (CTTPO), multi-site task scheduling algorithm (MTS) based on teaching, learning-based optimization and the energy saving on multi-sites (ESM) using DVS technique are proposed. CTTPO deals with trade-off between time and cost for the task partitioning and offloading. The MTS algorithm deals with time efficient scheduling on multi-sites, and ESM algorithm saves the energy on the multi-sites by switching the sites from high voltage to low voltage during ideal time. The simulation study demonstrates that the proposed algorithms outperformed the existing techniques based on time, cost and energy parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Energy conscious multi-site computation offloading for mobile cloud computing

Loading next page...
 
/lp/springer_journal/energy-conscious-multi-site-computation-offloading-for-mobile-cloud-bm4dKiJPU0
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-018-3264-0
Publisher site
See Article on Publisher Site

Abstract

In mobile devices, one of the major reasons for battery consumption is due to computation of complex applications. To provide high performance of execution on the mobile devices, the concept of mobile cloud computing (MCC) is used. MCC allows the computation complex modules to offload onto a cloud from a mobile device, which helps to remove the resource constraint condition of the mobile devices. Computations can also be offloaded to nearby clouds called multi-sites, which may have different resources, access delays, computation capability or service charges. The mobile users can specify their priority such as total completion time, cost or energy saving of the application execution in MCC environment. But most of the existing research is focused to optimize only one objective, i.e., either total completion time or cost or energy. But when offloading computation modules onto cloud-based multi-sites, a tradeoff solution is required to strike a balance between the total completion time and energy savings. Further, the entire computational execution on the cloud is to be served efficiently with optimal power utilization. Various algorithms are developed to reduce power consumption, and one such algorithm is dynamic voltage and frequency scaling (DVFS) algorithm. In this paper, new algorithms known as cost and time constraint task partitioning and offloading algorithm (CTTPO), multi-site task scheduling algorithm (MTS) based on teaching, learning-based optimization and the energy saving on multi-sites (ESM) using DVS technique are proposed. CTTPO deals with trade-off between time and cost for the task partitioning and offloading. The MTS algorithm deals with time efficient scheduling on multi-sites, and ESM algorithm saves the energy on the multi-sites by switching the sites from high voltage to low voltage during ideal time. The simulation study demonstrates that the proposed algorithms outperformed the existing techniques based on time, cost and energy parameters.

Journal

Soft ComputingSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off