Endothelin-1-induced hypertrophic alterations and heme oxygenase-1 expression in cardiomyoblasts are counteracted by beta estradiol: in vitro and in vivo studies

Endothelin-1-induced hypertrophic alterations and heme oxygenase-1 expression in cardiomyoblasts... Endothelin-1 (ET-1), a potent vasoconstrictor normally active in maintaining vascular tone, may mediate significant pathogenic effects, contributing to several serious diseases when aberrantly expressed or regulated. The present study evaluates the capacity of ET-1 to affect endothelin-1-associated hypertrophic activity and decreased expression of heme oxygenase-1 by H9c2 rat cardiomyoblasts in vitro, corresponding to in vivo processes underlying cardiovascular diseases (CVDs). Beta estradiol (β-E) is tested for its capacity to alter the effects of ET-1. H9c2 cells, cultured 48 h, were stimulated with 100–10,000 nM of ET-1 and evaluated for changes in cell size, cell viability, and expression of the cytoprotective heat shock protein heme oxygenase-1 (HO-1), with 200 nM of β-E included in selected cultures to evaluate its effect on ET-1-mediated changes. The application of 100 to 10,000 nM of ET-1 resulted in a significant increase in average cell size and decreases in both cell viability and HO-1 protein content (p < 0.05). Moreover, 200 nM of β-E was observed to significantly counteract these effects by cardiomyoblasts stimulated with 1000 nM of ET-1 (p < 0.05). Sprague-Dawley rats treated intravenously with 1000 ng/kg of ET-1 demonstrated reduced HO-1 expression in peripheral blood and left ventricular tissue, which was counteracted by injection of 200 ng/kg β-E—demonstrating a possible correspondence between in vitro and in vivo effects. An outcome of particular value for clinical use of β-E, in the management of cardiac hypertrophy, is the observed capacity of the drug to abate ET-1-mediated suppression of HO-1 expression. It has been previously demonstrated that HO-1 inducers exhibit potent cardioprotective properties, thus offering the promise of combining them with β-E, allowing lower effective dosage of the drug and concomitantly lower adverse side effects associated with its clinical use. Major findings of this investigation are that pretreatment of cardiomyoblasts with β-E inhibited their hypertrophic response to ET-1 and counteracts the decrease of cell viability. These effects were associated with a restoration of HO-1 protein expression in both under in vitro and in vivo conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naunyn-Schmiedeberg's Archives of Pharmacology Springer Journals

Endothelin-1-induced hypertrophic alterations and heme oxygenase-1 expression in cardiomyoblasts are counteracted by beta estradiol: in vitro and in vivo studies

Loading next page...
 
/lp/springer_journal/endothelin-1-induced-hypertrophic-alterations-and-heme-oxygenase-1-7Wwl6rnOIC
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by The Author(s)
Subject
Biomedicine; Pharmacology/Toxicology; Neurosciences
ISSN
0028-1298
eISSN
1432-1912
D.O.I.
10.1007/s00210-018-1462-z
Publisher site
See Article on Publisher Site

Abstract

Endothelin-1 (ET-1), a potent vasoconstrictor normally active in maintaining vascular tone, may mediate significant pathogenic effects, contributing to several serious diseases when aberrantly expressed or regulated. The present study evaluates the capacity of ET-1 to affect endothelin-1-associated hypertrophic activity and decreased expression of heme oxygenase-1 by H9c2 rat cardiomyoblasts in vitro, corresponding to in vivo processes underlying cardiovascular diseases (CVDs). Beta estradiol (β-E) is tested for its capacity to alter the effects of ET-1. H9c2 cells, cultured 48 h, were stimulated with 100–10,000 nM of ET-1 and evaluated for changes in cell size, cell viability, and expression of the cytoprotective heat shock protein heme oxygenase-1 (HO-1), with 200 nM of β-E included in selected cultures to evaluate its effect on ET-1-mediated changes. The application of 100 to 10,000 nM of ET-1 resulted in a significant increase in average cell size and decreases in both cell viability and HO-1 protein content (p < 0.05). Moreover, 200 nM of β-E was observed to significantly counteract these effects by cardiomyoblasts stimulated with 1000 nM of ET-1 (p < 0.05). Sprague-Dawley rats treated intravenously with 1000 ng/kg of ET-1 demonstrated reduced HO-1 expression in peripheral blood and left ventricular tissue, which was counteracted by injection of 200 ng/kg β-E—demonstrating a possible correspondence between in vitro and in vivo effects. An outcome of particular value for clinical use of β-E, in the management of cardiac hypertrophy, is the observed capacity of the drug to abate ET-1-mediated suppression of HO-1 expression. It has been previously demonstrated that HO-1 inducers exhibit potent cardioprotective properties, thus offering the promise of combining them with β-E, allowing lower effective dosage of the drug and concomitantly lower adverse side effects associated with its clinical use. Major findings of this investigation are that pretreatment of cardiomyoblasts with β-E inhibited their hypertrophic response to ET-1 and counteracts the decrease of cell viability. These effects were associated with a restoration of HO-1 protein expression in both under in vitro and in vivo conditions.

Journal

Naunyn-Schmiedeberg's Archives of PharmacologySpringer Journals

Published: Jan 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off