Endonuclease activities in the coleoptile and the first leaf of developing etiolated wheat seedlings

Endonuclease activities in the coleoptile and the first leaf of developing etiolated wheat seedlings DNase activity in coleoptiles and the first leaf apices of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) etiolated seedlings was found to increase significantly during seedling growth, peaking on the eighth day of plant development. The maximum of DNase activity was coincident with apoptotic internucleosomal DNA fragmentation in these organs. Wheat endonucleases are capable of hydrolyzing both singleand double-stranded DNA of various origins. The leaf and coleoptiles were found to exhibit nuclease activities that hydrolyzed the lambda phage DNA with N6-methyladenine and 5-methylcytosine more actively compared to the hydrolysis of similar unmethylated DNAs. Thus, the endonucleases of wheat seedlings are sensitive to the methylation status of their substrate DNAs. The leaves and coleoptiles exhibited both Ca2+/Mg2+- and Zn2+-dependent nuclease activities that underwent differential changes during development and senescence of seedling organs. EDTA at a concentration of 50 mM fully inhibited the total DNase activity. Electrophoretic heterogeneity was observed for DNase activities operating simultaneously in the coleoptile and the first leaf at different stages of seedling development. Proteins exhibiting DNase activity (16–80 kD mol wt) were revealed in the first leaf and the coleoptile; these proteins were mostly nucleases with the pH optimum around 7.0. Some endonucleases (mol wts of 36, 39, and 28 kD) were present in both organs of the seedling. Some other DNases (mol wts of 16, 56, and about 80 kD) were found in the coleoptile; these DNases hydrolyzed DNA in the nucleus at terminal stages of apoptosis. Different suites of DNase activities were revealed in the nucleus and the cytoplasm, the nuclear DNase activities being more diverse than the cytoplasmic ones. Thus, the cellular (organspecific) and subcellular heterogeneity in composition and activities of DNases has been revealed in wheat plants. These DNases undergo specific changes during seedling development, serving at various stages of programmed cell death in seedling tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Endonuclease activities in the coleoptile and the first leaf of developing etiolated wheat seedlings

Loading next page...
 
/lp/springer_journal/endonuclease-activities-in-the-coleoptile-and-the-first-leaf-of-X26yY4thmT
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709020022
Publisher site
See Article on Publisher Site

Abstract

DNase activity in coleoptiles and the first leaf apices of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) etiolated seedlings was found to increase significantly during seedling growth, peaking on the eighth day of plant development. The maximum of DNase activity was coincident with apoptotic internucleosomal DNA fragmentation in these organs. Wheat endonucleases are capable of hydrolyzing both singleand double-stranded DNA of various origins. The leaf and coleoptiles were found to exhibit nuclease activities that hydrolyzed the lambda phage DNA with N6-methyladenine and 5-methylcytosine more actively compared to the hydrolysis of similar unmethylated DNAs. Thus, the endonucleases of wheat seedlings are sensitive to the methylation status of their substrate DNAs. The leaves and coleoptiles exhibited both Ca2+/Mg2+- and Zn2+-dependent nuclease activities that underwent differential changes during development and senescence of seedling organs. EDTA at a concentration of 50 mM fully inhibited the total DNase activity. Electrophoretic heterogeneity was observed for DNase activities operating simultaneously in the coleoptile and the first leaf at different stages of seedling development. Proteins exhibiting DNase activity (16–80 kD mol wt) were revealed in the first leaf and the coleoptile; these proteins were mostly nucleases with the pH optimum around 7.0. Some endonucleases (mol wts of 36, 39, and 28 kD) were present in both organs of the seedling. Some other DNases (mol wts of 16, 56, and about 80 kD) were found in the coleoptile; these DNases hydrolyzed DNA in the nucleus at terminal stages of apoptosis. Different suites of DNase activities were revealed in the nucleus and the cytoplasm, the nuclear DNase activities being more diverse than the cytoplasmic ones. Thus, the cellular (organspecific) and subcellular heterogeneity in composition and activities of DNases has been revealed in wheat plants. These DNases undergo specific changes during seedling development, serving at various stages of programmed cell death in seedling tissues.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 31, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off