Encoding an arbitrary state in a [7,1,3] quantum error correction code

Encoding an arbitrary state in a [7,1,3] quantum error correction code We calculate the fidelity with which an arbitrary state can be encoded into a [7, 1, 3] Calderbank-Shor-Steane quantum error correction code in a non-equiprobable Pauli operator error environment with the goal of determining whether this encoding can be used for practical implementations of quantum computation. The determination of usability is accomplished by applying ideal error correction to the encoded state which demonstrates the correctability of errors that occurred during the encoding process. We also apply single-qubit Clifford gates to the encoded state and determine the accuracy with which these gates can be implemented. Finally, fault tolerant noisy error correction is applied to the encoded states allowing us to compare noisy (realistic) and perfect error correction implementations. We find the encoding to be usable for the states $${|0\rangle, |1\rangle}$$ , and $${|\pm\rangle = |0\rangle\pm|1\rangle}$$ . These results have implications for when non-fault tolerant procedures may be used in practical quantum computation and whether quantum error correction must be applied at every step in a quantum protocol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Encoding an arbitrary state in a [7,1,3] quantum error correction code

Loading next page...
 
/lp/springer_journal/encoding-an-arbitrary-state-in-a-7-1-3-quantum-error-correction-code-Lo6Nq0bZpG
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0414-7
Publisher site
See Article on Publisher Site

Abstract

We calculate the fidelity with which an arbitrary state can be encoded into a [7, 1, 3] Calderbank-Shor-Steane quantum error correction code in a non-equiprobable Pauli operator error environment with the goal of determining whether this encoding can be used for practical implementations of quantum computation. The determination of usability is accomplished by applying ideal error correction to the encoded state which demonstrates the correctability of errors that occurred during the encoding process. We also apply single-qubit Clifford gates to the encoded state and determine the accuracy with which these gates can be implemented. Finally, fault tolerant noisy error correction is applied to the encoded states allowing us to compare noisy (realistic) and perfect error correction implementations. We find the encoding to be usable for the states $${|0\rangle, |1\rangle}$$ , and $${|\pm\rangle = |0\rangle\pm|1\rangle}$$ . These results have implications for when non-fault tolerant procedures may be used in practical quantum computation and whether quantum error correction must be applied at every step in a quantum protocol.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 4, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off