Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Bostan, I. Kurkova, K. Raschel (2013)
A human proof of Gessel's lattice path conjectureTransactions of the American Mathematical Society, 369
M. Artin, B. Mazur (1965)
On Periodic PointsAnnals of Mathematics, 81
(2018)
Séries formelles algébriques
(1987)
M.-F.: Géométrie Algébrique Réelle
M Bousquet-Mélou, M Petkovšek (2003)
Walks confined in a quadrant are not always $$D$$ D -finiteTheor. Comp. Sci., 307
A Gabrielov (1971)
The formal relations between analytic functionsFunk. Anal. Pril., 5
R. Johnson, M. Nagata
Local Rings
S. Abhyankar (1964)
Local Analytic Geometry
G. Greuel, G. Pfister, H. Schönemann (2001)
SINGULAR: a computer algebra system for polynomial computationsACM Commun. Comput. Algebra, 42
C. Riquier (2009)
Les Systèmes D'équations aux Dérivées Partielles
M. Mishna (2006)
Classifying lattice walks restricted to the quarter planeJ. Comb. Theory, Ser. A, 116
Hans-Gert Gräbe (1994)
The tangent cone algorithm and homogenizationJournal of Pure and Applied Algebra, 97
(1998)
Involutive bases of polynomial ideals. Simplification of systems of algebraic and differential equations with applications
A. Galligo (1974)
A propos du théorème de préparation de weierstrass
M. Bousquet-M'elou, M. Mishna (2008)
Walks with small steps in the quarter planearXiv: Combinatorics
(1995)
Néron-Popescu desingularization, Algebra and geometry (Taipei
G. Fischer, L. Kay
Plane Algebraic CurvesNature, 107
Ferdinando Mora (1982)
An Algorithm to Compute the Equations of Tangent Cones
M. Alonso, F. Castro-Jiménez, H. Hauser, C. Koutschan (2018)
Echelons of power series and Gabrielov's counterexample to nested linear Artin approximationBulletin of the London Mathematical Society, 50
M Artin (1962)
Grothendieck topologies
M. Janet
Leçons sur les systèmes d'équations aux dérivées partiellesNature, 125
D. Popescu (1986)
General Néron desingularization and approximationNagoya Mathematical Journal, 104
D. Rees (1956)
A basis theorem for polynomial modulesMathematical Proceedings of the Cambridge Philosophical Society, 52
M. Spivakovsky (1999)
A new proof of D. Popescu’s theorem on smoothing of ring homomorphismsJournal of the American Mathematical Society, 12
J. Hoeven (2019)
Effective Power Series ComputationsFoundations of Computational Mathematics, 19
J. Aroca, 広中 平祐, J. Vicente (1975)
The theory of the maximal contact
A Bostan, M Kauers (2010)
The complete generating function for Gessel walks is algebraic. With an appendix by Mark van HoeijProc. Amer. Math. Soc., 138
A. Bostan, Manuel Kauers (2009)
The complete Generating Function for Gessel Walks is AlgebraicArXiv, abs/0909.1965
M. Bousquet-M'elou (2015)
An elementary solution of Gessel's walks in the quadrantarXiv: Combinatorics
G. Greuel, G. Pfister (2002)
A Singular Introduction to Commutative Algebra
M. Nagata (1953)
On the Theory of Henselian RingsNagoya Mathematical Journal, 5
B. Sturmfels, N. White (1991)
Computing combinatorial decompositions of ringsCombinatorica, 11
J. Ruiz (1993)
The Basic Theory of Power Series
H. Hauser, G. Müller (1994)
A rank theorem for analytic maps between power series spacesPublications Mathématiques de l'Institut des Hautes Études Scientifiques, 80
M. Bousquet-Mélou, M. Petkovšek (2002)
Walks confined in a quadrant are not always D-finiteTheor. Comput. Sci., 307
A. Gabrielov (1971)
Formal relations between analytic functionsFunctional Analysis and Its Applications, 5
(1999)
The Red Book of Varietes and Schemes. Springer, 2nd edition
H. Kurke, G. Pfister, Marko Roczen (1975)
Henselsche Ringe und algebraische Geometrie
D. Popescu (1985)
General Néron desingularizationNagoya Mathematical Journal, 100
M Bousquet-Mélou, M Petkovšek (2000)
Linear recurrences with constant coefficientsDiscrete Math., 225
Marina Weber (2016)
Using Algebraic Geometry
E. Wilczynski
On the Form of the Power Series for an Algebraic FunctionAmerican Mathematical Monthly, 26
D. Lazard (1983)
Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations
H. Hironaka (1964)
Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: IIAnnals of Mathematics, 79
W. Seiler (2002)
A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable typeApplicable Algebra in Engineering, Communication and Computing, 20
O. Zariski (1948)
Analytical Irreducibility of Normal VarietiesAnnals of Mathematics, 49
H. Grauert (1971)
Über die deformation isolierter singularitäten analytischer mengenInventiones mathematicae, 15
D. Gorenstein, M. Rosenlicht, M. Artin (1969)
Algebraic approximation of structures over complete local ringsPublications Mathématiques de l'Institut des Hautes Études Scientifiques, 36
(1977)
Idealistic exponents of singularity
(2005)
Algebraische Potenzreihen
Hans-Gert Gräbe (1995)
Algorithms in Local AlgebraJ. Symb. Comput., 19
M. Amasaki (1990)
Application of the generalized Weierstrass preparation theorem to the study of homogeneous idealsTransactions of the American Mathematical Society, 317
T. Nagell (1958)
On linear recurrences with constant coefficientsArkiv för Matematik, 3
M. Janet
Sur les systèmes d'équations aux dérivées partielles, 19
D Rees (1956)
A basis theorem for polynomial modulesProc. Cambridge Phil. Soc., 52
M. Raynaud (1970)
Anneaux locaux henséliens
W. Seiler (2007)
Spencer Cohomology, Differential Equations, and Pommaret Bases
W. Seiler (2002)
A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret basesApplicable Algebra in Engineering, Communication and Computing, 20
K Baclawski, A Garsia (1981)
Combinatorial decomposition of a class of ringsAdv. Math., 39
M. Alonso, T. Mora, M. Raimondo (1992)
A computational model for algebraic power seriesJournal of Pure and Applied Algebra, 77
W Seiler (2009)
A combinatorial approach to involution and $$\delta $$ δ -regularity II: Structure analysis of polynomial modules with Pommaret basesAppl. Algebra Engrg. Comm. Comput., 20
The division algorithm for ideals of algebraic power series satisfying Hironaka’s box condition is shown to be finite when expressed suitably in terms of the defining polynomial codes of the series. In particular, the codes of the reduced standard basis of the ideal can be constructed effectively.
Foundations of Computational Mathematics – Springer Journals
Published: May 26, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.