Enantioselective hydrogenation of α-phenylcinnamic acids over cinchonidine-modified Pd/C commercial catalysts

Enantioselective hydrogenation of α-phenylcinnamic acids over cinchonidine-modified Pd/C... Enantioselective hydrogenation of α-phenylcinnamic acid (PCA) and p,p′-dimethoxyphenylcinnamic acid (DMPCA) was studied over a variety of commercial 5 % Pd/C catalysts to reveal catalyst properties suitable for obtaining high enantioselectivity. The catalysts were characterized by CO adsorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). It is confirmed that pretreatment at 353 K under atmospheric pressure of H2 before modification with cinchonidine is very effective for all the Pd/C catalysts used here to improve the selectivity and reaction rate. It is suggested that the distribution of Pd metal particles is crucial to attain high selectivity (ee% = 79 ± 1 for PCA, 89 ± 2 for DMPCA): a uniform or eggshell-type distribution of Pd is more suitable than an egg-white or egg-yolk-type distribution. It is also suggested that the dispersion of Pd metal particles controls the enantioselectivity over cinchonidine (CD)-modified Pd/C catalysts. XPS techniques are proposed to provide a convenient method to find desirable catalysts. The choice of such Pd/C catalysts could facilitate high-throughput guided study on highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Enantioselective hydrogenation of α-phenylcinnamic acids over cinchonidine-modified Pd/C commercial catalysts

Loading next page...
 
/lp/springer_journal/enantioselective-hydrogenation-of-phenylcinnamic-acids-over-hTCL00hnOm
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2313-x
Publisher site
See Article on Publisher Site

Abstract

Enantioselective hydrogenation of α-phenylcinnamic acid (PCA) and p,p′-dimethoxyphenylcinnamic acid (DMPCA) was studied over a variety of commercial 5 % Pd/C catalysts to reveal catalyst properties suitable for obtaining high enantioselectivity. The catalysts were characterized by CO adsorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). It is confirmed that pretreatment at 353 K under atmospheric pressure of H2 before modification with cinchonidine is very effective for all the Pd/C catalysts used here to improve the selectivity and reaction rate. It is suggested that the distribution of Pd metal particles is crucial to attain high selectivity (ee% = 79 ± 1 for PCA, 89 ± 2 for DMPCA): a uniform or eggshell-type distribution of Pd is more suitable than an egg-white or egg-yolk-type distribution. It is also suggested that the dispersion of Pd metal particles controls the enantioselectivity over cinchonidine (CD)-modified Pd/C catalysts. XPS techniques are proposed to provide a convenient method to find desirable catalysts. The choice of such Pd/C catalysts could facilitate high-throughput guided study on highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 24, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off