Enabling Schema-Free XQuery with meaningful query focus

Enabling Schema-Free XQuery with meaningful query focus The widespread adoption of XML holds the promise that document structure can be exploited to specify precise database queries. However, users may have only a limited knowledge of the XML structure, and may be unable to produce a correct XQuery expression, especially in the context of a heterogeneous information collection. The default is to use keyword-based search and we are all too familiar with how difficult it is to obtain precise answers by these means. We seek to address these problems by introducing the notion of Meaningful Query Focus (MQF) for finding related nodes within an XML document. MQF enables users to take full advantage of the preciseness and efficiency of XQuery without requiring (perfect) knowledge of the document structure. Such a Schema-Free XQuery is potentially of value not just to casual users with partial knowledge of schema, but also to experts working in data integration or data evolution. In such a context, a schema-free query, once written, can be applied universally to multiple data sources that supply similar content under different schemas, and applied “forever” as these schemas evolve. Our experimental evaluation found that it is possible to express a wide variety of queries in a schema-free manner and efficiently retrieve correct results over a broad diversity of schemas. Furthermore, the evaluation of a schema-free query is not expensive: using a novel stack-based algorithm we developed for computing MQF, the overhead is from 1 to 4 times the execution time of an equivalent schema-aware query. The evaluation cost of schema-free queries can be further reduced by as much as 68% using a selectivity-based algorithm we develop to enable the integration of MQF operation into the query pipeline. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Enabling Schema-Free XQuery with meaningful query focus

Loading next page...
 
/lp/springer_journal/enabling-schema-free-xquery-with-meaningful-query-focus-tLFgpv3tLY
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0003-4
Publisher site
See Article on Publisher Site

Abstract

The widespread adoption of XML holds the promise that document structure can be exploited to specify precise database queries. However, users may have only a limited knowledge of the XML structure, and may be unable to produce a correct XQuery expression, especially in the context of a heterogeneous information collection. The default is to use keyword-based search and we are all too familiar with how difficult it is to obtain precise answers by these means. We seek to address these problems by introducing the notion of Meaningful Query Focus (MQF) for finding related nodes within an XML document. MQF enables users to take full advantage of the preciseness and efficiency of XQuery without requiring (perfect) knowledge of the document structure. Such a Schema-Free XQuery is potentially of value not just to casual users with partial knowledge of schema, but also to experts working in data integration or data evolution. In such a context, a schema-free query, once written, can be applied universally to multiple data sources that supply similar content under different schemas, and applied “forever” as these schemas evolve. Our experimental evaluation found that it is possible to express a wide variety of queries in a schema-free manner and efficiently retrieve correct results over a broad diversity of schemas. Furthermore, the evaluation of a schema-free query is not expensive: using a novel stack-based algorithm we developed for computing MQF, the overhead is from 1 to 4 times the execution time of an equivalent schema-aware query. The evaluation cost of schema-free queries can be further reduced by as much as 68% using a selectivity-based algorithm we develop to enable the integration of MQF operation into the query pipeline.

Journal

The VLDB JournalSpringer Journals

Published: May 1, 2008

References

  • XQuery: An XML query language
    Chamberlin, D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off