Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions

Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation... In order to assess the potential CO2 capture ability of recycled concrete aggregates (RCAs) subjected to accelerated carbonation, an empirical prediction model has been developed in relation to carbonation conditions and the characteristics of RCAs. In this study, two sources of RCAs were used: RCAs from a designed concrete mixture and RCAs obtained from crushing of old laboratory concrete cubes. Two types of carbonation approaches were employed: (A) pressurized carbonation in a chamber with 100% CO2 concentration and (B) flow-through carbonation at ambient pressure with different CO2 concentrations. Four groups of RCAs particles with sizes of 20–10, 5–10, 2.36–5 and <2.36 mm were then tested and evaluated. It was found that a moderate relative humidity, a CO2 concentration higher than 10%, a slight positive pressure or a gas flow rate of >5 L/min were optimal to accelerate the RCAs carbonation. Moreover, the CO2 uptake of fine RCAs particles was faster than that of large RCAs particles. The developed model was able to predict the CO2 uptake in relation to relative humidity, particle size, carbonation duration and cement content of the RCA under the tested carbonation conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions

Loading next page...
 
/lp/springer_journal/empirical-modelling-of-co2-uptake-by-recycled-concrete-aggregates-6j3GO2HrtJ
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by RILEM
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-017-1066-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial