Emergence of anti-F(R) gravity in type-IV bouncing cosmology as due to M 0-brane

Emergence of anti-F(R) gravity in type-IV bouncing cosmology as due to M 0-brane Recently, some authors considered the origin of a type-IV singular bounce in modified gravity and obtained the explicit form of F(R) which can produce this type of cosmology. In this paper, we show that during the contracting branch of type-IV bouncing cosmology, the sign of gravity changes, and antigravity emerges. In our model, M0 branes get together and shape a universe, an anti-universe, and a wormhole which connects them. As time passes, this wormhole is dissolved in the universes, F(R) gravity emerges, and the universe expands. When the brane universes become close to each other, the squared energy of their system becomes negative, and some tachyonic states are produced. To remove these states, universes are assumed to be compact, the sign of compacted gravity changes, and anti-F(R) gravity arises, which causes getting away of the universes from each other. In this theory, a Type-IV singularity occurs at t = t s , which is the time of producing tachyons between expansion and contraction branches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gravitation and Cosmology Springer Journals

Emergence of anti-F(R) gravity in type-IV bouncing cosmology as due to M 0-brane

Loading next page...
 
/lp/springer_journal/emergence-of-anti-f-r-gravity-in-type-iv-bouncing-cosmology-as-due-to-7omwxmQbKm
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Physics; Classical and Quantum Gravitation, Relativity Theory; Astronomy, Observations and Techniques; Astrophysics and Astroparticles; Quantum Physics
ISSN
0202-2893
eISSN
1995-0721
D.O.I.
10.1134/S0202289317030136
Publisher site
See Article on Publisher Site

Abstract

Recently, some authors considered the origin of a type-IV singular bounce in modified gravity and obtained the explicit form of F(R) which can produce this type of cosmology. In this paper, we show that during the contracting branch of type-IV bouncing cosmology, the sign of gravity changes, and antigravity emerges. In our model, M0 branes get together and shape a universe, an anti-universe, and a wormhole which connects them. As time passes, this wormhole is dissolved in the universes, F(R) gravity emerges, and the universe expands. When the brane universes become close to each other, the squared energy of their system becomes negative, and some tachyonic states are produced. To remove these states, universes are assumed to be compact, the sign of compacted gravity changes, and anti-F(R) gravity arises, which causes getting away of the universes from each other. In this theory, a Type-IV singularity occurs at t = t s , which is the time of producing tachyons between expansion and contraction branches.

Journal

Gravitation and CosmologySpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off