Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development

Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development TRIM family members have been implicated in a variety of biological processes such as differentiation and development. We here found that Trim59 plays a critical role in early embryo development from blastocyst stage to gastrula. There existed delayed development and empty yolk sacs from embryonic day (E) 8.5 in Trim59−/− embryos. No viable Trim59−/− embryos were observed beyond E9.5. Trim59 deficiency affected primary germ layer formation at the beginning of gastrulation. At E6.5 and E7.5, the expression of primary germ layer formation-associated genes including Brachyury, lefty2, Cer1, Otx2, Wnt3, and BMP4 was reduced in Trim59−/− embryos. Homozygous mutant embryonic epiblasts were contracted and the mesoderm was absent. Trim59 could interact with actin- and myosin-associated proteins. Its deficiency disturbed F-actin polymerization during inner cell mass differentiation. Trim59-mediated polymerization of F-actin was via WASH K63-linked ubiquitination. Thus, Trim59 may be a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell Death & Disease Springer Journals

Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development

Loading next page...
 
/lp/springer_journal/embryonic-lethality-in-mice-lacking-trim59-due-to-impaired-02DjxAzCIJ
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Cell Biology; Immunology; Cell Culture; Antibodies
eISSN
2041-4889
D.O.I.
10.1038/s41419-018-0370-y
Publisher site
See Article on Publisher Site

Abstract

TRIM family members have been implicated in a variety of biological processes such as differentiation and development. We here found that Trim59 plays a critical role in early embryo development from blastocyst stage to gastrula. There existed delayed development and empty yolk sacs from embryonic day (E) 8.5 in Trim59−/− embryos. No viable Trim59−/− embryos were observed beyond E9.5. Trim59 deficiency affected primary germ layer formation at the beginning of gastrulation. At E6.5 and E7.5, the expression of primary germ layer formation-associated genes including Brachyury, lefty2, Cer1, Otx2, Wnt3, and BMP4 was reduced in Trim59−/− embryos. Homozygous mutant embryonic epiblasts were contracted and the mesoderm was absent. Trim59 could interact with actin- and myosin-associated proteins. Its deficiency disturbed F-actin polymerization during inner cell mass differentiation. Trim59-mediated polymerization of F-actin was via WASH K63-linked ubiquitination. Thus, Trim59 may be a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly.

Journal

Cell Death & DiseaseSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off