Embryoglycan: a highly branched poly-N-acetyllactosamine in pluripotent stem cells and early embryonic cells

Embryoglycan: a highly branched poly-N-acetyllactosamine in pluripotent stem cells and early... Embryonal carcinoma cells, stem cells of teratocarcinomas, are pluripotent stem cells and also prototypes of embryonic stem cells. Embryonal carcinoma cells contain large amounts of a highly branched poly-N-acetyllactosamine called embryoglycan, which has a molecular weight of approximately 10,000 or greater, and is asparagine-linked. This glycan was found by analyses of fucose-labeled glycopeptides, and its characteristics were established by biochemical analyses. The content of embryoglycan progressively decreases during the in vitro differentiation of embryonal carcinoma cells. Embryoglycan is also abundant in mouse embryonic stem cells and preimplantation mouse embryos, and decreases during embryogenesis. Embryoglycan carries a number of carbohydrate markers of murine pluripotent stem cells. Lewis x markers, such as SSEA-1, 4C9 antigen, and binding sites for Lotus tetragonolobus agglutinin are of particular importance. 4C9 antigenicity requires clustering of Lewis x, best accomplished by poly-N-acetyllactosamine branching, whereas SSEA-1 does not. Although in vivo evidence is lacking, these epitopes have been suggested to participate in cell-to-cell and cell-to-substratum adhesion. Other markers on embryoglycan include α-galactosyl antigens such as ECMA-2, and binding sites for Dolichos biflorus agglutinin, the epitope of which is considered to be identical to Sda antigen, namely, GalNAcβ1–4(NeuAcα2–3)Galβ1–4GlcNAc. While embryoglycan is also present in human teratocarcinoma cells, the carbohydrate markers characterized in human pluripotent stem cells to date are largely carried by glycolipids and keratan sulfate. Information on embryoglycan and markers carried by it may assist in the development of new markers of human pluripotent stem cells and their progenies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glycoconjugate Journal Springer Journals

Embryoglycan: a highly branched poly-N-acetyllactosamine in pluripotent stem cells and early embryonic cells

Loading next page...
 
/lp/springer_journal/embryoglycan-a-highly-branched-poly-n-acetyllactosamine-in-pluripotent-QaA6KxJNkc
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Pathology
ISSN
0282-0080
eISSN
1573-4986
D.O.I.
10.1007/s10719-016-9673-3
Publisher site
See Article on Publisher Site

Abstract

Embryonal carcinoma cells, stem cells of teratocarcinomas, are pluripotent stem cells and also prototypes of embryonic stem cells. Embryonal carcinoma cells contain large amounts of a highly branched poly-N-acetyllactosamine called embryoglycan, which has a molecular weight of approximately 10,000 or greater, and is asparagine-linked. This glycan was found by analyses of fucose-labeled glycopeptides, and its characteristics were established by biochemical analyses. The content of embryoglycan progressively decreases during the in vitro differentiation of embryonal carcinoma cells. Embryoglycan is also abundant in mouse embryonic stem cells and preimplantation mouse embryos, and decreases during embryogenesis. Embryoglycan carries a number of carbohydrate markers of murine pluripotent stem cells. Lewis x markers, such as SSEA-1, 4C9 antigen, and binding sites for Lotus tetragonolobus agglutinin are of particular importance. 4C9 antigenicity requires clustering of Lewis x, best accomplished by poly-N-acetyllactosamine branching, whereas SSEA-1 does not. Although in vivo evidence is lacking, these epitopes have been suggested to participate in cell-to-cell and cell-to-substratum adhesion. Other markers on embryoglycan include α-galactosyl antigens such as ECMA-2, and binding sites for Dolichos biflorus agglutinin, the epitope of which is considered to be identical to Sda antigen, namely, GalNAcβ1–4(NeuAcα2–3)Galβ1–4GlcNAc. While embryoglycan is also present in human teratocarcinoma cells, the carbohydrate markers characterized in human pluripotent stem cells to date are largely carried by glycolipids and keratan sulfate. Information on embryoglycan and markers carried by it may assist in the development of new markers of human pluripotent stem cells and their progenies.

Journal

Glycoconjugate JournalSpringer Journals

Published: May 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off