Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments

Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in... The first part of this paper is a short review of the 35S radioactive tracer methods developed in recent years. Then, the experimental results obtained so far on Mo/Al2O3 catalysts are compared with computer simulation results recently claimed in order to elucidate the coordinatively unsaturated site (CUS) creation/replenishment/ regeneration mechanism over MoS2 crystallites. The computer simulations allowed us to pre-select thermodynamically acceptable mechanisms among a set of suggested ones. Then, by comparison of the calculated activation energies with the 35S experiments results we could further validate the most probable mechanism. This mechanism involved the dissociative adsorption of an H2 molecule on the metallic edge of a MoS2 crystallite surface with further creation of a CUS by release of one H2S molecule in the gas phase. Both laboratory and computer simulated experiments permitted to calculate the activation energy for the H2S liberation reaction. In both cases, this energy was about 10- 12 kcal/mol, confirming the accuracy of the proposed mechanism. Moreover, the calculated activation energy of the rate-limiting step for the creation of one CUS by the proposed mechanism was about 23 kcal/mol, which was also in good agreement with the experimental activation energy of the dibenzothiophene (DBT) hydrodesulphurisation (HDS) reaction (typically about 20- 22 kcal/mol). This correlation indicated that the DBT HDS reaction rate might be intrinsically governed by the CUS formation/replenishment process, i.e. that the vacancy formation process is a crucial parameter in the global HDS reaction mechanism. Nevertheless, in the case of the 4,6-dimethyl DBT (4,6-DMDBT) HDS reaction, the experimental activation energy is higher (approx. 30 kcal/mol), confirming that external parameters induced by the 4,6-DMDBT-specific properties themselves are likely to play an important role in the reaction process, in addition to the ones intrinsic to the catalytic phase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments

Loading next page...
 
/lp/springer_journal/elucidation-by-computer-simulations-of-the-cus-regeneration-mechanism-pwPVI5WNtZ
Publisher
Brill Academic Publishers
Copyright
Copyright © 2003 by VSP 2003
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856703322539636
Publisher site
See Article on Publisher Site

Abstract

The first part of this paper is a short review of the 35S radioactive tracer methods developed in recent years. Then, the experimental results obtained so far on Mo/Al2O3 catalysts are compared with computer simulation results recently claimed in order to elucidate the coordinatively unsaturated site (CUS) creation/replenishment/ regeneration mechanism over MoS2 crystallites. The computer simulations allowed us to pre-select thermodynamically acceptable mechanisms among a set of suggested ones. Then, by comparison of the calculated activation energies with the 35S experiments results we could further validate the most probable mechanism. This mechanism involved the dissociative adsorption of an H2 molecule on the metallic edge of a MoS2 crystallite surface with further creation of a CUS by release of one H2S molecule in the gas phase. Both laboratory and computer simulated experiments permitted to calculate the activation energy for the H2S liberation reaction. In both cases, this energy was about 10- 12 kcal/mol, confirming the accuracy of the proposed mechanism. Moreover, the calculated activation energy of the rate-limiting step for the creation of one CUS by the proposed mechanism was about 23 kcal/mol, which was also in good agreement with the experimental activation energy of the dibenzothiophene (DBT) hydrodesulphurisation (HDS) reaction (typically about 20- 22 kcal/mol). This correlation indicated that the DBT HDS reaction rate might be intrinsically governed by the CUS formation/replenishment process, i.e. that the vacancy formation process is a crucial parameter in the global HDS reaction mechanism. Nevertheless, in the case of the 4,6-dimethyl DBT (4,6-DMDBT) HDS reaction, the experimental activation energy is higher (approx. 30 kcal/mol), confirming that external parameters induced by the 4,6-DMDBT-specific properties themselves are likely to play an important role in the reaction process, in addition to the ones intrinsic to the catalytic phase.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off