Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments

Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in... The first part of this paper is a short review of the 35S radioactive tracer methods developed in recent years. Then, the experimental results obtained so far on Mo/Al2O3 catalysts are compared with computer simulation results recently claimed in order to elucidate the coordinatively unsaturated site (CUS) creation/replenishment/ regeneration mechanism over MoS2 crystallites. The computer simulations allowed us to pre-select thermodynamically acceptable mechanisms among a set of suggested ones. Then, by comparison of the calculated activation energies with the 35S experiments results we could further validate the most probable mechanism. This mechanism involved the dissociative adsorption of an H2 molecule on the metallic edge of a MoS2 crystallite surface with further creation of a CUS by release of one H2S molecule in the gas phase. Both laboratory and computer simulated experiments permitted to calculate the activation energy for the H2S liberation reaction. In both cases, this energy was about 10- 12 kcal/mol, confirming the accuracy of the proposed mechanism. Moreover, the calculated activation energy of the rate-limiting step for the creation of one CUS by the proposed mechanism was about 23 kcal/mol, which was also in good agreement with the experimental activation energy of the dibenzothiophene (DBT) hydrodesulphurisation (HDS) reaction (typically about 20- 22 kcal/mol). This correlation indicated that the DBT HDS reaction rate might be intrinsically governed by the CUS formation/replenishment process, i.e. that the vacancy formation process is a crucial parameter in the global HDS reaction mechanism. Nevertheless, in the case of the 4,6-dimethyl DBT (4,6-DMDBT) HDS reaction, the experimental activation energy is higher (approx. 30 kcal/mol), confirming that external parameters induced by the 4,6-DMDBT-specific properties themselves are likely to play an important role in the reaction process, in addition to the ones intrinsic to the catalytic phase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments

Loading next page...
Brill Academic Publishers
Copyright © 2003 by VSP 2003
Chemistry; Inorganic Chemistry; Physical Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial