Elucidating the molecular mechanism of the inhibitory effect of epigallocatechin-3-gallate on Microcystis aeruginosa

Elucidating the molecular mechanism of the inhibitory effect of epigallocatechin-3-gallate on... Epigallocatechin-3-gallate (EGCG), an eco-friendly polyphenol, has a strong inhibitory effect on the bloom-forming cyanobacterium Microcystis aeruginosa. In order to reveal the molecular mechanism of algal inhibition of plant polyphenols, quantitative proteome analysis based on iTRAQ (isobaric tags for relative and absolute quantification) was applied to investigate EGCG-induced proteomic changes in M. aeruginosa. Following treatment with EGCG for 48 h, the total protein content was compared with that of untreated cells, and 88 differentially expressed proteins were identified, of which 30 were upregulated and 58 were downregulated. Proteins involved in chlorophyll biosynthesis, carbon and nitrate assimilation and cell division were among the most downregulated, which resulted in growth suppression. By contrast, anti-oxidative proteins and molecular chaperones, such as superoxide dismutase, glutaredoxin, and heat shock proteins, were distinctly upregulated. Eighteen potentially crucial proteins were selected for assessment of transcription by real-time quantitative PCR, which confirmed the results of proteomic experiment. In addition, immunoblotting confirmed downregulation of three representative proteins, magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase AcsF, glutamine synthetase GlnN, and metalloprotease FtsH, following EGCG treatment, consistent with the results of iTRAQ quantitation experiment. It is speculated that chlorophyll biosynthesis, carbon and nitrate assimilation, and cell division are the main inhibition targets of EGCG. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Elucidating the molecular mechanism of the inhibitory effect of epigallocatechin-3-gallate on Microcystis aeruginosa

Loading next page...
 
/lp/springer_journal/elucidating-the-molecular-mechanism-of-the-inhibitory-effect-of-73StHIDscT
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-017-1370-5
Publisher site
See Article on Publisher Site

Abstract

Epigallocatechin-3-gallate (EGCG), an eco-friendly polyphenol, has a strong inhibitory effect on the bloom-forming cyanobacterium Microcystis aeruginosa. In order to reveal the molecular mechanism of algal inhibition of plant polyphenols, quantitative proteome analysis based on iTRAQ (isobaric tags for relative and absolute quantification) was applied to investigate EGCG-induced proteomic changes in M. aeruginosa. Following treatment with EGCG for 48 h, the total protein content was compared with that of untreated cells, and 88 differentially expressed proteins were identified, of which 30 were upregulated and 58 were downregulated. Proteins involved in chlorophyll biosynthesis, carbon and nitrate assimilation and cell division were among the most downregulated, which resulted in growth suppression. By contrast, anti-oxidative proteins and molecular chaperones, such as superoxide dismutase, glutaredoxin, and heat shock proteins, were distinctly upregulated. Eighteen potentially crucial proteins were selected for assessment of transcription by real-time quantitative PCR, which confirmed the results of proteomic experiment. In addition, immunoblotting confirmed downregulation of three representative proteins, magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase AcsF, glutamine synthetase GlnN, and metalloprotease FtsH, following EGCG treatment, consistent with the results of iTRAQ quantitation experiment. It is speculated that chlorophyll biosynthesis, carbon and nitrate assimilation, and cell division are the main inhibition targets of EGCG.

Journal

Journal of Applied PhycologySpringer Journals

Published: May 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off