Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Elimination of spiral waves in excitable media by magnetic induction

Elimination of spiral waves in excitable media by magnetic induction The formation of spiral waves in excitable media is a fascinating example of the beauty of nonlinear dynamics in spatiotemporal systems. Apart from the beauty of the patterns, the subject also has many practical application. For example, the emergence of spiral waves in cardiac tissue can lead to arrhythmias. Cortical spiral waves are also involved in epileptic seizures. Motivated by this, we here study the effects of magnetic induction on the formation of spiral waves in excitable media. An external sinusoidal magnetic induction with different amplitudes and angular frequencies is applied in order to study whether spiral waves could be eliminated. We use a network of coupled neurons as a model for the excitable medium. The four-variable magnetic Hindmarsh–Rose model is used for the local dynamics of each isolated neuron. The distribution of the cell membrane potential over time, affected by magnetic induction, is determined and the results are depicted as snapshots of the 2D network. Our research reveals that the continuance of rotating spiral seeds is impaired by high-amplitude magnetic induction. Moreover, we show that low-frequency induction is not capable of breaking the reorganizing rhythm of the spiral seeds, while much higher frequencies can be too fast to overcome this special rhythm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

Elimination of spiral waves in excitable media by magnetic induction

Loading next page...
 
/lp/springer_journal/elimination-of-spiral-waves-in-excitable-media-by-magnetic-induction-rCtSB0K5dO
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
DOI
10.1007/s11071-018-4385-9
Publisher site
See Article on Publisher Site

Abstract

The formation of spiral waves in excitable media is a fascinating example of the beauty of nonlinear dynamics in spatiotemporal systems. Apart from the beauty of the patterns, the subject also has many practical application. For example, the emergence of spiral waves in cardiac tissue can lead to arrhythmias. Cortical spiral waves are also involved in epileptic seizures. Motivated by this, we here study the effects of magnetic induction on the formation of spiral waves in excitable media. An external sinusoidal magnetic induction with different amplitudes and angular frequencies is applied in order to study whether spiral waves could be eliminated. We use a network of coupled neurons as a model for the excitable medium. The four-variable magnetic Hindmarsh–Rose model is used for the local dynamics of each isolated neuron. The distribution of the cell membrane potential over time, affected by magnetic induction, is determined and the results are depicted as snapshots of the 2D network. Our research reveals that the continuance of rotating spiral seeds is impaired by high-amplitude magnetic induction. Moreover, we show that low-frequency induction is not capable of breaking the reorganizing rhythm of the spiral seeds, while much higher frequencies can be too fast to overcome this special rhythm.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jun 1, 2018

References