Eliminating unscalable communication in transaction processing

Eliminating unscalable communication in transaction processing Multicore hardware demands software parallelism. Transaction processing workloads typically exhibit high concurrency, and, thus, provide ample opportunities for parallel execution. Unfortunately, because of the characteristics of the application, transaction processing systems must moderate and coordinate communication between independent agents; since it is notoriously difficult to implement high performing transaction processing systems that incur no communication whatsoever. As a result, transaction processing systems cannot always convert abundant, even embarrassing, request-level parallelism into execution parallelism due to communication bottlenecks. Transaction processing system designers must therefore find ways to achieve scalability while still allowing communication to occur. To this end, we identify three forms of communication in the system—unbounded, fixed, and cooperative—and argue that only the first type poses a fundamental threat to scalability. The other two types tend not impose obstacles to scalability, though they may reduce single-thread performance. We argue that proper analysis of communication patterns in any software system is a powerful tool for improving the system’s scalability. Then, we present and evaluate under a common framework techniques that attack significant sources of unbounded communication during transaction processing and sketch a solution for those that remain. The solutions we present affect fundamental services of any transaction processing engine, such as locking, logging, physical page accesses, and buffer pool frame accesses. They either reduce such communication through caching, downgrade it to a less-threatening type, or eliminate it completely through system design. We find that the later technique, revisiting the transaction processing architecture, is the most effective. The final design cuts unbounded communication by roughly an order of magnitude compared with the baseline, while exhibiting better scalability on multicore machines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Eliminating unscalable communication in transaction processing

Loading next page...
Springer Berlin Heidelberg
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial