Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein kinase in wheat

Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein... Wheat cultured cells were used to study the role of Ca2+ in regulating protein kinases during the induction of defense-related genes by fungal elicitor treatments. Manipulation of intracellular Ca2+ concentrations by treatment with calcium ionophore A23187 in the presence of high extracellular Ca2+ resulted in the induction of mRNA expression of WCK-1, a gene encoding mitogen-activated protein (MAP) kinase. The induction of WCK-1 mRNA by A23187 did not occur when extracellular Ca2+ was chelated by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The WCK-1 mRNA was also induced by Typhula ishikariensis-derived elicitors, suggesting a possible involvement of WCK-1 in the plant defense response against pathogens. BAPTA and a calcium channel blocker, La3+, inhibited the elicitor-induced expression of the WCK-1 mRNA. A recombinant fusion protein of WCK-1 (GST-WCK-1) autophosphorylated at the Tyr residue and exhibited an autophosphorylation-dependent protein kinase activity towards myelin basic protein. Alteration of Tyr-196 in the conserved ‘TEY’ motif in GST-WCK-1 to Phe by site-directed mutagenesis abolished the autophosphorylation. The GST-WCK-1 protein was activated by elicitor-treated wheat cell extracts but not by the control extract. These results suggest that fungal elicitors activate WCK-1, a specific MAP kinase in wheat. Furthermore, the results suggest a possible involvement of Ca2+ in enhancing the MAP kinase signaling cascade in plants by controlling the levels of the MAP kinase transcripts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein kinase in wheat

Loading next page...
 
/lp/springer_journal/elicitor-and-a23187-induced-expression-of-wck-1-a-gene-encoding-Bop9E3kIf5
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006263607135
Publisher site
See Article on Publisher Site

Abstract

Wheat cultured cells were used to study the role of Ca2+ in regulating protein kinases during the induction of defense-related genes by fungal elicitor treatments. Manipulation of intracellular Ca2+ concentrations by treatment with calcium ionophore A23187 in the presence of high extracellular Ca2+ resulted in the induction of mRNA expression of WCK-1, a gene encoding mitogen-activated protein (MAP) kinase. The induction of WCK-1 mRNA by A23187 did not occur when extracellular Ca2+ was chelated by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The WCK-1 mRNA was also induced by Typhula ishikariensis-derived elicitors, suggesting a possible involvement of WCK-1 in the plant defense response against pathogens. BAPTA and a calcium channel blocker, La3+, inhibited the elicitor-induced expression of the WCK-1 mRNA. A recombinant fusion protein of WCK-1 (GST-WCK-1) autophosphorylated at the Tyr residue and exhibited an autophosphorylation-dependent protein kinase activity towards myelin basic protein. Alteration of Tyr-196 in the conserved ‘TEY’ motif in GST-WCK-1 to Phe by site-directed mutagenesis abolished the autophosphorylation. The GST-WCK-1 protein was activated by elicitor-treated wheat cell extracts but not by the control extract. These results suggest that fungal elicitors activate WCK-1, a specific MAP kinase in wheat. Furthermore, the results suggest a possible involvement of Ca2+ in enhancing the MAP kinase signaling cascade in plants by controlling the levels of the MAP kinase transcripts.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off