Elevated Temperatures Inhibit Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I

Elevated Temperatures Inhibit Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I In experiments with barley (Hordeum vulgare L.) leaves, absorbance changes at 830 nm induced by far-red light were measured as indicator of redox conversions of primary electron donor (P700) of photosystem I (PSI). Using this method, the action of elevated temperature (45°C, 5 min) on PSI-driven electron transport through alternative pathways was examined. Thermally induced inactivation was found to transform nonmonotonic photooxidation of P700, induced by far-red light in untreated leaves, into a fast and monotonic process completed within 1-s illumination. The short-term heating of leaves fully eliminated the fast component in the kinetics of P700+ dark reduction, related to operation of ferredoxin-dependent cyclic electron transport around PSI. At the same time, thermoinactivation substantially accelerated the slow and middle components of dark P700+ reduction, i.e., the components determined by arrival of electrons to PSI from reductants located in the chloroplast stroma. The latter effect was also observed after heating of leaves pretreated with antimycin A or methyl viologen; both agents are known to inhibit the ferredoxin-dependent electron transport. It is concluded that the heat treatment of leaves inhibits the ferredoxin-dependent pathway of electron transport around PSI and activates electron transport through alternative routes providing reducing equivalents to PSI from stromal reductants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Elevated Temperatures Inhibit Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I

Loading next page...
 
/lp/springer_journal/elevated-temperatures-inhibit-ferredoxin-dependent-cyclic-electron-mJNBf3QwVe
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0086-6
Publisher site
See Article on Publisher Site

Abstract

In experiments with barley (Hordeum vulgare L.) leaves, absorbance changes at 830 nm induced by far-red light were measured as indicator of redox conversions of primary electron donor (P700) of photosystem I (PSI). Using this method, the action of elevated temperature (45°C, 5 min) on PSI-driven electron transport through alternative pathways was examined. Thermally induced inactivation was found to transform nonmonotonic photooxidation of P700, induced by far-red light in untreated leaves, into a fast and monotonic process completed within 1-s illumination. The short-term heating of leaves fully eliminated the fast component in the kinetics of P700+ dark reduction, related to operation of ferredoxin-dependent cyclic electron transport around PSI. At the same time, thermoinactivation substantially accelerated the slow and middle components of dark P700+ reduction, i.e., the components determined by arrival of electrons to PSI from reductants located in the chloroplast stroma. The latter effect was also observed after heating of leaves pretreated with antimycin A or methyl viologen; both agents are known to inhibit the ferredoxin-dependent electron transport. It is concluded that the heat treatment of leaves inhibits the ferredoxin-dependent pathway of electron transport around PSI and activates electron transport through alternative routes providing reducing equivalents to PSI from stromal reductants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 28, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off