Access the full text.
Sign up today, get DeepDyve free for 14 days.
When a subdivision scheme is factorised into lifting steps, it admits an in–place and invertible implementation, and it can be the predictor of many multiresolution biorthogonal wavelet transforms. In the regular setting where the underlying lattice hierarchy is defined by ℤ s and a dilation matrix M, such a factorisation should deal with every vertex of each subset in ℤ s /Mℤ s in the same way. We define a subdivision scheme which admits such a factorisation as being uniformly elementary factorable. We prove a necessary and sufficient condition on the directions of the Box spline and the arity of the subdivision for the scheme to admit such a factorisation, and recall some known keys to construct it in practice.
Advances in Computational Mathematics – Springer Journals
Published: Jun 5, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.