Elemental composition of PM2.5 in the urban environment of San Juan, Argentina

Elemental composition of PM2.5 in the urban environment of San Juan, Argentina This study contributes to the current knowledge about air pollution in the province of San Juan, Argentina. Sampling was carried out to measure the fine particulate matter in the atmosphere (PM2.5) of the city of San Juan. PM2.5 was collected continuously during the winter and spring seasons of 2014 and 2015, and the concentrations of 14 elements (Pb, Ca, K, Cd, Ni, Cr, Mn, V, Cu, Ti, Ba, Co, Sr, and Fe) were determined in PM2.5 filters using the technique of X-ray fluorescence by synchrotron radiation (SR-XRF). The results revealed that PM2.5 presented annual and seasonal variations, showing a higher concentration during the winter seasons. In addition, for the elements quantified in the filters, a multivariate analysis (Positive Matrix Factorization) was performed to identify the main sources of emission of these elements in the study area, with a series of components being obtained that corresponded to their compositions, which were assigned physical meanings. The first factor, which was the most important in contribution of the sum of the measured elements (45%), was determined mainly by the elements K, Ti, V, Mn, and Fe, which came predominantly from soil particles. The second factor contributed 30% to the measured species in PM2.5, with higher Ba and Zn content perhaps being related to emissions from vehicular traffic. Finally, the third factor, in which Pb, Cr, and Ca predominated, may be an indicator of industrial activity and contributed 25% of the sum of the measured elements of PM2.5. The results of this study provide the first PM composition database in the province, and this can now be used in the development of mitigation and prevention programs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Elemental composition of PM2.5 in the urban environment of San Juan, Argentina

Loading next page...
 
/lp/springer_journal/elemental-composition-of-pm2-5-in-the-urban-environment-of-san-juan-4FxL8x0tJz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0793-5
Publisher site
See Article on Publisher Site

Abstract

This study contributes to the current knowledge about air pollution in the province of San Juan, Argentina. Sampling was carried out to measure the fine particulate matter in the atmosphere (PM2.5) of the city of San Juan. PM2.5 was collected continuously during the winter and spring seasons of 2014 and 2015, and the concentrations of 14 elements (Pb, Ca, K, Cd, Ni, Cr, Mn, V, Cu, Ti, Ba, Co, Sr, and Fe) were determined in PM2.5 filters using the technique of X-ray fluorescence by synchrotron radiation (SR-XRF). The results revealed that PM2.5 presented annual and seasonal variations, showing a higher concentration during the winter seasons. In addition, for the elements quantified in the filters, a multivariate analysis (Positive Matrix Factorization) was performed to identify the main sources of emission of these elements in the study area, with a series of components being obtained that corresponded to their compositions, which were assigned physical meanings. The first factor, which was the most important in contribution of the sum of the measured elements (45%), was determined mainly by the elements K, Ti, V, Mn, and Fe, which came predominantly from soil particles. The second factor contributed 30% to the measured species in PM2.5, with higher Ba and Zn content perhaps being related to emissions from vehicular traffic. Finally, the third factor, in which Pb, Cr, and Ca predominated, may be an indicator of industrial activity and contributed 25% of the sum of the measured elements of PM2.5. The results of this study provide the first PM composition database in the province, and this can now be used in the development of mitigation and prevention programs.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Nov 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off