Element uptake and physiological responses of Lactuca sativa upon co-exposures to tourmaline and dissolved humic acids

Element uptake and physiological responses of Lactuca sativa upon co-exposures to tourmaline and... Element migration and physiological response in Lactuca sativa upon co-exposure to tourmaline (T) and dissolved humic acids (DHAs) were investigated. Different fractions of DHA1 and DHA4 and three different doses of T were introduced into Hoagland’s solution. The results indicated that T enhanced the contents of elements such as N and C, Si and Al in the roots and shoots. The correlation between TF values of Si and Al (R 2 = 0.7387) was higher than that of Si and Mn (R 2 = 0.4961) without the presence of DHAs. However, both DHA1 and DHA4 increased the correlation between Si and Mn, but decreased the one between Si and Al. CAT activities in T treatments were positively correlated to the contents of N and Al in the shoots, whose R 2 was 0.9994 and 0.9897, respectively. In the co-exposure of DHAs and tourmaline, DHA4 exhibited more impacts on element uptake, CAT activities, as well as ABA contents in comparison with the presence of DHA1, regardless of the T exposure doses. These results suggested that DHAs have effects on mineral element behaviors and physiological response in Lactuca sativa upon exposure to tourmaline for the first time, which had great use in guiding soil remediation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Element uptake and physiological responses of Lactuca sativa upon co-exposures to tourmaline and dissolved humic acids

Loading next page...
 
/lp/springer_journal/element-uptake-and-physiological-responses-of-lactuca-sativa-upon-co-7dQYLAkIKl
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1751-6
Publisher site
See Article on Publisher Site

Abstract

Element migration and physiological response in Lactuca sativa upon co-exposure to tourmaline (T) and dissolved humic acids (DHAs) were investigated. Different fractions of DHA1 and DHA4 and three different doses of T were introduced into Hoagland’s solution. The results indicated that T enhanced the contents of elements such as N and C, Si and Al in the roots and shoots. The correlation between TF values of Si and Al (R 2 = 0.7387) was higher than that of Si and Mn (R 2 = 0.4961) without the presence of DHAs. However, both DHA1 and DHA4 increased the correlation between Si and Mn, but decreased the one between Si and Al. CAT activities in T treatments were positively correlated to the contents of N and Al in the shoots, whose R 2 was 0.9994 and 0.9897, respectively. In the co-exposure of DHAs and tourmaline, DHA4 exhibited more impacts on element uptake, CAT activities, as well as ABA contents in comparison with the presence of DHA1, regardless of the T exposure doses. These results suggested that DHAs have effects on mineral element behaviors and physiological response in Lactuca sativa upon exposure to tourmaline for the first time, which had great use in guiding soil remediation.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off